Review for Exam I

MATH 2306 sec. 52
Sections Covered: 5, 6, 7, 8, 9

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) An LR series circuit with inductance 20 henries and resistance 4 ohms has electromotive force of 200 volts applied to it. Find the current $i(t)$ if $i(0)=0 . \quad i(t)=50\left(1-e^{-t / 5}\right)$
(2) A tank initially contains 500 L of salt water in which 5 kg of salt is dissolved. Suppose a brine solution containing 0.2 kg of salt per liter runs into the tank. The brine enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$, and the well mixed solution is flowing out of the tank at the same rate. Find the amount of salt $A(t)$ in the tank at time t. $\quad A(t)=100-95 e^{-t / 100}$
(3) A large tank is partially filled with 100 gallons of fluid into which 10 pounds of salt is dissolved. Fresh water is pumped in at a rate of 6 gallons per minute, and the well mixed solution is pumped out at the slower rate of 4 gallons per minute. Determine the number of pounds of salt in the tank after 30 minutes. $\quad A(30)=\frac{125}{32} \mathrm{lbs}$
(4) Determine whether the set of functions is linearly dependent or linearly independent on the indicated interval.
(a) $\quad y_{1}(x)=e^{x+1}, \quad y_{2}(x)=e^{x-1}, \quad(-\infty, \infty) \quad$ Dependent
(b) $\quad f_{1}(x)=\sin x, \quad f_{2}(x)=\tan x, \quad\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad$ Independent
(c) $\quad g_{1}(t)=t, \quad g_{2}(t)=t^{2}, \quad g_{3}(t)=t^{3}, \quad(0, \infty) \quad$ Independent
(5) Find the general solution of the homogeneous equation.
(a) $y^{\prime \prime}-4 y^{\prime}+5 y=0, \quad y=c_{1} e^{2 x} \cos x+c_{2} e^{2 x} \sin x$
(b) $y^{\prime \prime}+6 y^{\prime}+9 y=0 \quad y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$
(c) $y^{\prime \prime}-36 y=0 \quad y=c_{1} e^{6 x}+c_{2} e^{-6 x}$
(d) $y^{(4)}+3 y^{\prime \prime}-4 y=0 \quad y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos (2 x)+c_{4} \sin (2 x)$
(6) Solve the IVP
$y^{\prime \prime}-3 y^{\prime}+2 y=0 \quad y(0)=0, \quad y^{\prime}(0)=2 \quad y=2 e^{2 x}-2 e^{x}$
(7) Given one solution of the homogeneous equation, use reduction of order to find a second linearly independent solution.
(a) $\quad(x-1) y^{\prime \prime}-x y^{\prime}+y=0 \quad x>1, \quad y_{1}(x)=e^{x}, \quad y_{2}(x)=x$
(b) $\quad x^{2} y^{\prime \prime}+3 x y^{\prime}-3 y=0 \quad x>0, \quad y_{1}(x)=x, \quad y_{2}(x)=x^{-3}$

The remaining problems are from section 9.

(8) Find the general solution of the nonhomogeneous equation

$$
y^{\prime \prime}+6 y^{\prime}+9 y=e^{x}+3 e^{-3 x} \quad y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}+\frac{3}{2} x^{2} e^{-3 x}+\frac{1}{16} e^{x}
$$

(9) Determine the form of the particular solution.
(a) $y^{\prime \prime}-4 y^{\prime}+5 y=x \cos 2 x \quad y_{p}=(A x+B) \cos (2 x)+(C x+D) \sin (2 x)$
(b) $y^{\prime \prime}+y=x^{3}+e^{x} \quad y_{p}=A x^{3}+B x^{2}+C x+D+E e^{x}$
(c) $y^{\prime \prime}-4 y^{\prime}+5 y=x e^{2 x} \sin x \quad y_{p}=\left(A x^{2}+B x\right) e^{2 x} \cos x+\left(C x^{2}+D x\right) e^{2 x} \sin x$
(d) $y^{\prime \prime}-2 y^{\prime}+y=1+e^{x} \quad y_{p}=A+B x^{2} e^{x}$

