Review for Exam I

MATH 2306 sec. 52

Sections Covered: 5, 6, 7, 8, 9

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.

(1) An LR series circuit with inductance 20 henries and resistance 4 ohms has electromotive force of 200 volts applied to it. Find the current i(t) if i(0) = 0. $i(t) = 50(1 - e^{-t/5})$

(2) A tank initially contains 500 L of salt water in which 5 kg of salt is dissolved. Suppose a brine solution containing 0.2 kg of salt per liter runs into the tank. The brine enters the tank at a rate of 5 L/min, and the well mixed solution is flowing out of the tank at the same rate. Find the amount of salt A(t) in the tank at time t. $A(t) = 100 - 95e^{-t/100}$

(3) A large tank is partially filled with 100 gallons of fluid into which 10 pounds of salt is dissolved. Fresh water is pumped in at a rate of 6 gallons per minute, and the well mixed solution is pumped out at the slower rate of 4 gallons per minute. Determine the number of pounds of salt in the tank after 30 minutes. $A(30) = \frac{125}{32}$ lbs

(4) Determine whether the set of functions is linearly dependent or linearly independent on the indicated interval.

(a) $y_1(x) = e^{x+1}$, $y_2(x) = e^{x-1}$, $(-\infty, \infty)$ Dependent

(b) $f_1(x) = \sin x$, $f_2(x) = \tan x$, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Independent (c) $g_1(t) = t$, $g_2(t) = t^2$, $g_3(t) = t^3$, $(0, \infty)$ Independent

(5) Find the general solution of the homogeneous equation.

(a)
$$y'' - 4y' + 5y = 0$$
, $y = c_1 e^{2x} \cos x + c_2 e^{2x} \sin x$

- (b) y'' + 6y' + 9y = 0 $y = c_1 e^{-3x} + c_2 x e^{-3x}$
- (c) y'' 36y = 0 $y = c_1 e^{6x} + c_2 e^{-6x}$
- (d) $y^{(4)} + 3y'' 4y = 0$ $y = c_1 e^x + c_2 e^{-x} + c_3 \cos(2x) + c_4 \sin(2x)$

(6) Solve the IVP

y'' - 3y' + 2y = 0 y(0) = 0, y'(0) = 2 $y = 2e^{2x} - 2e^{x}$

(7) Given one solution of the homogeneous equation, use reduction of order to find a second linearly independent solution.

(a)
$$(x-1)y''-xy'+y=0$$
 $x>1$, $y_1(x)=e^x$, $y_2(x)=x$

(b) $x^2y'' + 3xy' - 3y = 0$ x > 0, $y_1(x) = x$, $y_2(x) = x^{-3}$

The remaining problems are from section 9.

(8) Find the general solution of the nonhomogeneous equation

$$y'' + 6y' + 9y = e^x + 3e^{-3x} \qquad y = c_1 e^{-3x} + c_2 x e^{-3x} + \frac{3}{2} x^2 e^{-3x} + \frac{1}{16} e^x$$

(9) Determine the form of the particular solution.

- (a) $y'' 4y' + 5y = x \cos 2x$ $y_p = (Ax + B) \cos(2x) + (Cx + D) \sin(2x)$
- (b) $y'' + y = x^3 + e^x$ $y_p = Ax^3 + Bx^2 + Cx + D + Ee^x$
- (c) $y'' 4y' + 5y = xe^{2x} \sin x$ $y_p = (Ax^2 + Bx)e^{2x} \cos x + (Cx^2 + Dx)e^{2x} \sin x$
- (d) $y'' 2y' + y = 1 + e^x$ $y_p = A + Bx^2 e^x$