Practice for Exam 2 MATH 3260 sec. 57 \& 58 Fall 2017

Sections Covered: 2.2, 2.3, 3.1, 3.2, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Evaluate the determinant of each matrix.
(a) $\left|\begin{array}{cccc}3 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 4 & 0 & 2\end{array}\right|$
(b) $\left|\begin{array}{ccc}2 & 1 & -1 \\ 3 & 2 & 0 \\ -2 & 0 & -2\end{array}\right|$
(c) $\left|\begin{array}{ccc}2 & 1 & -1 \\ 0 & k & 3 \\ 0 & 0 & k-1\end{array}\right|$
(2) Find all values of x such that $\operatorname{det}(A)=0$ where

$$
A=\left[\begin{array}{cc}
x-1 & 3 \\
2 & x
\end{array}\right]
$$

(3) Solve the following system of equations using a matrix inverse.

$$
\begin{array}{r}
2 x_{1}-4 x_{2}=5 \\
-3 x_{1}+2 x_{2}=0
\end{array}
$$

(4) Use the row reduction algorithm to find the inverse matrix if it exists.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(5) Determine if the given set is a subspace of \mathbb{R}^{3}.
(a) $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=x_{2}+x_{3}\right\}$
(b) $\quad S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}-x_{3}=1\right\}$
(6) Let \mathbb{P}_{2} denote the set of all polynomials of degree less than or equal to 2 . Determine if the following sets are subspaces of \mathbb{P}_{2}. (The symbol " \in " means "is an element of".)
(a) $S=\left\{a t^{2}+b t+c \mid a>0\right\}$
(b) $S=\left\{\mathbf{p}(t) \in \mathbb{P}_{2} \mid \mathbf{p}(1)=0\right.$ and $\left.\mathbf{p}(0)=0\right\}$
(7) Find a matrix A such that the given set is $\operatorname{Col} A$.

$$
\left\{\left[\begin{array}{c}
b-c \\
2 b+c+d \\
5 c-4 d \\
d
\end{array}\right]: b, c, d \operatorname{in} \mathbb{R}\right\}
$$

(8) Find a spanning set for $\operatorname{Nul} A$ and a spanning set for $\operatorname{Col} A$ where

$$
A=\left[\begin{array}{llll}
3 & 6 & 1 & -6 \\
2 & 4 & 1 & -5
\end{array}\right]
$$

(9) The matrices A and B are row equivalent. Use this information to find bases for $\operatorname{Nul} A$, $\operatorname{Col} A$, and $\operatorname{Row} A$. Determine both $\operatorname{rank} A$ and $\operatorname{dim}(\operatorname{Nul} A)$.
(a) $A=\left[\begin{array}{rrrrr}1 & 3 & 4 & -1 & 2 \\ 2 & 6 & 6 & 0 & -3 \\ 3 & 9 & 3 & 6 & -3 \\ 3 & 9 & 0 & 9 & 0\end{array}\right], \quad B=\left[\begin{array}{rrrrr}1 & 3 & 4 & -1 & 2 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(b) $A=\left[\begin{array}{rrrrrr}1 & 1 & -2 & 0 & 1 & -2 \\ 1 & 2 & -3 & 0 & -2 & -3 \\ 1 & -1 & 0 & 0 & 1 & 6 \\ 1 & -2 & 2 & 1 & -3 & 0 \\ 1 & -2 & 1 & 0 & 2 & -1\end{array}\right], \quad B=\left[\begin{array}{rrrrrr}1 & 1 & -2 & 0 & 1 & -2 \\ 0 & 1 & -1 & 0 & -3 & -1 \\ 0 & 0 & 1 & 1 & -13 & -1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
(10) Show that the given set is a basis for \mathbb{R}^{2}. Determine the change of coordinates matrix $P_{\mathcal{B}}$ and its inverse (use the order presented here). Then use this to find the indicated coordinate vectors.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
5 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\}
$$

Determine $[\mathbf{x}]_{\mathcal{B}}$ for
(a) $\mathbf{x}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$,
(b) $\mathbf{x}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$,
(c) $\mathbf{x}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
(11) Determine the dimension of the indicated vector space.
(a) The subspace of \mathbb{R}^{4} of vectors whose components sum to zero.
(b) The subspace of \mathbb{P}_{4} consisting of polynomials of the form $\mathbf{p}(t)=a t^{4}+b\left(t^{2}-t\right)$, for real numbers a and b.
(c) The null space of a 5×8 matrix with a rank of 4 .
(d) The row space of an $m \times n$ matrix whose null space has dimension 6 . (It may be necessary to express the answer in terms of m or n or both.)

Vector Space Axioms

A nonempty set \mathbf{V} together, with operations called addition and scalar multiplication, is a vector space if the following properties hold for every \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbf{V} and scalars c and d in \mathbb{R}.
(1) $\mathbf{u}+\mathbf{v}$ is in \mathbf{V}
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(3) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(4) There is an element denoted $\mathbf{0}$ in \mathbf{V} such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ for every \mathbf{u} in \mathbf{V}.
(5) For each element \mathbf{u} in \mathbf{V} there is an element denoted $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
(6) $c \mathbf{u}$ is in \mathbf{V} for each scalar c
(7) $(c d) \mathbf{u}=c(d \mathbf{u})$
(8) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
(9) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(10) $1 \mathbf{u}=\mathbf{u}$

