Solutions to Practice for Exam 2 MATH 3260 sec .57 \& 58 Fall 2017

Sections Covered: 2.2, 2.3, 3.1, 3.2, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Evaluate the determinant of each matrix.
(a) $\left|\begin{array}{cccc}3 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 4 & 0 & 2\end{array}\right|=0 \quad$ (b) $\left|\begin{array}{ccc}2 & 1 & -1 \\ 3 & 2 & 0 \\ -2 & 0 & -2\end{array}\right|=-6 \quad$ (c) $\left|\begin{array}{ccc}2 & 1 & -1 \\ 0 & k & 3 \\ 0 & 0 & k-1\end{array}\right|=2 k(k-1)$
(2) Find all values of x such that $\operatorname{det}(A)=0$ where

$$
A=\left[\begin{array}{cc}
x-1 & 3 \\
2 & x
\end{array}\right] \quad x=-2, \quad \text { or } \quad x=3
$$

(3) Solve the following system of equations using a matrix inverse.

$$
\begin{array}{r}
2 x_{1}-4 x_{2}=5 \\
-3 x_{1}+2 x_{2}=0
\end{array} \quad\left(-\frac{5}{4},-\frac{15}{8}\right)
$$

(4) Use the row reduction algorithm to find the inverse matrix if it exists.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

(5) Determine if the given set is a subspace of \mathbb{R}^{3}.The answers I'm giving here would NOT be sufficient if you gave them on a test. You are expected to justify your claims. I'm just providing you a way to double check your understanding.
(a) $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=x_{2}+x_{3}\right\} \quad$ It is. Check the three criteria, or identify a spanning set.
(b) $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}-x_{3}=1\right\} \quad$ It is not. In particular, 0 is not in it.
(6) Let \mathbb{P}_{2} denote the set of all polynomials of degree less than or equal to 2 . Determine if the following sets are subspaces of \mathbb{P}_{2}. (The symbol " \in " means "is an element of".) Again, I'd expect justification for such a claim on an exam.
(a) $S=\left\{a t^{2}+b t+c \mid a>0\right\} \quad$ It is not. In particular, $\mathbf{0}$ is not in it.
(b) $S=\left\{\mathbf{p}(t) \in \mathbb{P}_{2} \mid \mathbf{p}(1)=0\right.$ and $\left.\mathbf{p}(0)=0\right\} \quad$ It is. Check the three criteria, or identify a spanning set.
(7) Find a matrix A such that the given set is $\operatorname{Col} A$.

$$
\left\{\left[\begin{array}{c}
b-c \\
2 b+c+d \\
5 c-4 d \\
d
\end{array}\right]: b, c, d \mathrm{in} \mathbb{R}\right\} \quad A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
2 & 1 & 1 \\
0 & 5 & -4 \\
0 & 0 & 1
\end{array}\right]
$$

(8) Find a spanning set for $\operatorname{Nul} A$ and a spanning set for $\operatorname{Col} A$ where

$$
A=\left[\begin{array}{rrrr}
3 & 6 & 1 & -6 \\
2 & 4 & 1 & -5
\end{array}\right] \quad \operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
3 \\
1
\end{array}\right]\right\}, \quad \operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

(9) The matrices A and B are row equivalent. Use this information to find bases for $\operatorname{Nul} A$, $\operatorname{Col} A$, and Row A. Determine both $\operatorname{rank} A$ and $\operatorname{dim}(\operatorname{Nul} A)$.

$$
\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{r}
-1 \\
-1 \\
-1 \\
1 \\
0 \\
0
\end{array}\right]\right\}, \quad \operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
2 \\
-1 \\
-2 \\
-2
\end{array}\right],\left[\begin{array}{r}
-2 \\
-3 \\
0 \\
2 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-2 \\
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{r}
-2 \\
-3 \\
6 \\
0 \\
-1
\end{array}\right]\right\}
$$

$$
\begin{aligned}
& \text { (a) } A=\left[\begin{array}{rrrrr}
1 & 3 & 4 & -1 & 2 \\
2 & 6 & 6 & 0 & -3 \\
3 & 9 & 3 & 6 & -3 \\
3 & 9 & 0 & 9 & 0
\end{array}\right], \quad B=\left[\begin{array}{rrrrr}
1 & 3 & 4 & -1 & 2 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{r}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-3 \\
0 \\
1 \\
1 \\
0
\end{array}\right]\right\}, \quad \operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
6 \\
3 \\
0
\end{array}\right],\left[\begin{array}{r}
2 \\
-3 \\
-3 \\
0
\end{array}\right]\right\} \\
& \operatorname{Row} A=\operatorname{Span}\left\{\left[\begin{array}{r}
1 \\
3 \\
4 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{r}
0 \\
0 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{r}
0 \\
0 \\
0 \\
0 \\
-5
\end{array}\right]\right\}, \quad \operatorname{rank} A=3, \quad \operatorname{dim}(\operatorname{Nul} A)=2 \\
& \text { (b) } A=\left[\begin{array}{rrrrrr}
1 & 1 & -2 & 0 & 1 & -2 \\
1 & 2 & -3 & 0 & -2 & -3 \\
1 & -1 & 0 & 0 & 1 & 6 \\
1 & -2 & 2 & 1 & -3 & 0 \\
1 & -2 & 1 & 0 & 2 & -1
\end{array}\right], \quad B=\left[\begin{array}{rrrrrr}
1 & 1 & -2 & 0 & 1 & -2 \\
0 & 1 & -1 & 0 & -3 & -1 \\
0 & 0 & 1 & 1 & -13 & -1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Row $A=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ 1 \\ -2 \\ 0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1 \\ 0 \\ -3 \\ -1\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ 1 \\ 1 \\ -13 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}, \quad \operatorname{rank} A=5, \quad \operatorname{dim}(\operatorname{Nul} A)=1$
(10) Show that the given set is a basis for \mathbb{R}^{2}. Determine the change of coordinates matrix $P_{\mathcal{B}}$ and its inverse (use the order presented here). Then use this to find the indicated coordinate vectors.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
5 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\}, \quad P_{\mathcal{B}}=\left[\begin{array}{ll}
5 & 2 \\
1 & 2
\end{array}\right], \quad P_{\mathcal{B}}^{-1}=\frac{1}{8}\left[\begin{array}{rr}
2 & -2 \\
-1 & 5
\end{array}\right]
$$

Determine $[\mathrm{x}]_{\mathcal{B}}$ for
(a) $\quad \mathbf{x}=\left[\begin{array}{l}5 \\ 1\end{array}\right], \quad[\mathrm{x}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(b) $\mathbf{x}=\left[\begin{array}{l}2 \\ 2\end{array}\right], \quad[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(c) $\mathbf{x}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{r}-\frac{5}{4} \\ \frac{17}{8}\end{array}\right]$
(11) Determine the dimension of the indicated vector space.
(a) The subspace of \mathbb{R}^{4} of vectors whose components sum to zero. 3
(b) The subspace of \mathbb{P}_{4} consisting of polynomials of the form $\mathbf{p}(t)=a t^{4}+b\left(t^{2}-t\right)$, for real numbers a and $b .2$
(c) The null space of a 5×8 matrix with a rank of 4.4
(d) The row space of an $m \times n$ matrix whose null space has dimension 6. (It may be necessary to express the answer in terms of m or n or both.) $n-6$

