Practice for Exam 2 (Ritter) MATH 3260 Spring 2018

Sections Covered: 1.8, 1.9, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3
These practice problems are intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Determine whether the transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}$ is a linear transformation. Justify your conclusion.

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+1,0,0, x_{2}-x_{3}\right)
$$

(2) Show that T is a linear transformation by finding a matrix that implements the mapping. (The terms x_{1}, x_{2} etc. are entries in a vector as opposed to vectors themselves.)

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}, 3 x_{2}, 0,4 x_{1}+x_{2}\right)
$$

(3) Show that if T is a linear transformation, then it is necessarily true that $T(\mathbf{0})=\mathbf{0}$.
(4) Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear tranformation defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-3 x_{3}, 2 x_{1}+2 x_{2}\right) .
$$

(a) Identify the domain and codomain.
(b) Determine if T is one to one.
(c) Determine if T is onto.
(d) Is $(1,1)$ in the domain of T ? If so, find its image. Is $(1,1)$ in the range of T ? Why or why not?
(5) Consider the matrices given. Compute each expression if it exists. If it doesn't exist, state why.

$$
A=\left[\begin{array}{rrr}
2 & -2 & 1 \\
1 & 1 & -1 \\
0 & 1 & 3
\end{array}\right], \quad B=\left[\begin{array}{rrr}
2 & 5 & -3 \\
1 & -1 & 0 \\
3 & 4 & -3
\end{array}\right], \quad C=\left[\begin{array}{rrr}
1 & 2 & -4 \\
2 & 4 & -8
\end{array}\right]
$$

(a) $A+2 B$
(b) A^{T}
(c) $B+C$
(d) $A C$
(e) $A C^{T}$
(f) $C^{T} C$
(6) Evaluate the determinant of each matrix.
(a) $\left|\begin{array}{cccc}3 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 4 & 0 & 2\end{array}\right|$
(b) $\left|\begin{array}{ccc}2 & 1 & -1 \\ 3 & 2 & 0 \\ -2 & 0 & -2\end{array}\right|$
(c) $\left|\begin{array}{ccc}2 & 1 & -1 \\ 0 & k & 3 \\ 0 & 0 & k-1\end{array}\right|$
(7) Find all values of x such that $\operatorname{det}(A)=0$ where $A=\left[\begin{array}{cc}x-1 & 3 \\ 2 & x\end{array}\right]$.
(8) Solve the following system of equations twice, first using a matrix inverse, and then using Crammer's rule.

$$
\begin{array}{r}
2 x_{1}-4 x_{2}=5 \\
-3 x_{1}+2 x_{2}=0
\end{array}
$$

(9) Use the row reduction algorithm to find the inverse matrix if it exists.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

(10) Find the volume of the parallelepiped determined by the vectors $\mathbf{u}=(1,0,-1), \mathbf{v}=$ $(2,1,1)$, and $\mathbf{w}=(0,-3,3)$.
(11) Determine if the given set is a subspace of \mathbb{R}^{3}.
(a) $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=x_{2}+x_{3}\right\}$
(b) $\quad S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}-x_{3}=1\right\}$
(12) Let \mathbb{P}_{2} denote the set of all polynomials of degree less than or equal to 2 . Determine if the following sets are subspaces of \mathbb{P}_{2}.
(a) $S=\left\{a t^{2}+b t+c \mid a>0\right\}$
(b) $S=\left\{\mathbf{p}(t)\right.$ in $\mathbb{P}_{2} \mid \mathbf{p}(1)=0$ and $\left.\mathbf{p}(0)=0\right\}$
(13) Find a matrix A such that the given set is $\operatorname{Col} A$.

$$
\left\{\left[\begin{array}{c}
b-c \\
2 b+c+d \\
5 c-4 d \\
d
\end{array}\right]: b, c, d \text { in } \mathbb{R}\right\}
$$

(14) Find a spanning set for $\operatorname{Nul} A$ and a spanning set for $\operatorname{Col} A$ where

$$
\text { (a) } A=\left[\begin{array}{rrrr}
3 & 6 & 1 & -6 \\
2 & 4 & 1 & -5
\end{array}\right] \quad \text { (b) } A=\left[\begin{array}{rrrrr}
1 & 3 & 4 & -1 & 2 \\
2 & 6 & 6 & 0 & -3 \\
3 & 9 & 3 & 6 & -3 \\
3 & 9 & 0 & 9 & 0
\end{array}\right]
$$

