Practice for Exam 2 (Ritter) MATH 3260 Spring 2018

Sections Covered: 1.8, 1.9, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3
These practice problems are intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Determine whether the transformation $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}$ is a linear transformation. Justify your conclusion.

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+1,0,0, x_{2}-x_{3}\right) \quad \text { No. For one thing, } T(\mathbf{0}) \neq 0 .
$$

(2) Show that T is a linear transformation by finding a matrix that implements the mapping. (The terms x_{1}, x_{2} etc. are entries in a vector as opposed to vectors themselves.)

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}, 3 x_{2}, 0,4 x_{1}+x_{2}\right) \quad \text { The standard matrix } A=\left[\begin{array}{rr}
1 & -2 \\
0 & 3 \\
0 & 0 \\
4 & 1
\end{array}\right]
$$

(3) Show that if T is a linear transformation, then it is necessarily true that $T(\mathbf{0})=\mathbf{0}$. One argument can be made by taking any x in the domain. By definition of scalar multiplication, $\mathbf{0}=0 \mathrm{x}$ (the zero vector in the domain of T). Then using the linearity properties, $T(\mathbf{0})=$ $T(0 \mathbf{x})=0 T(\mathbf{x})=\mathbf{0}$ where the final term is the zero vector in the codomain.
(4) Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear tranformation defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-3 x_{3}, 2 x_{1}+2 x_{2}\right) .
$$

(a) Identify the domain and codomain. \mathbb{R}^{3} and \mathbb{R}^{2}, respectively
(b) Determine if T is one to one. No. Note that $T(3,-3,1)=(0,0)$.
(c) Determine if T is onto. Yes. Show for example that $\left\{T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)\right\}$ spans \mathbb{R}^{2}.
(d) Is $(1,1)$ in the domain of T ? If so, find its image. Is $(1,1)$ in the range of T ? Why or why not? No to the first since it's not in \mathbb{R}^{3}. Yes to the second by virtue of the answer to part (c) above.
(5) Consider the matrices given. Compute each expression if it exists. If it doesn't exist, state why.

$$
A=\left[\begin{array}{rrr}
2 & -2 & 1 \\
1 & 1 & -1 \\
0 & 1 & 3
\end{array}\right], \quad B=\left[\begin{array}{rrr}
2 & 5 & -3 \\
1 & -1 & 0 \\
3 & 4 & -3
\end{array}\right], \quad C=\left[\begin{array}{rrr}
1 & 2 & -4 \\
2 & 4 & -8
\end{array}\right]
$$

(a) $A+2 B\left[\begin{array}{rrr}6 & 8 & -5 \\ 3 & -1 & -1 \\ 6 & 9 & -3\end{array}\right]$
(b) $A^{T}\left[\begin{array}{rrr}2 & 1 & 0 \\ -2 & 1 & 1 \\ 1 & -1 & 3\end{array}\right]$
(c) $B+C \quad$ This is undefined since the matrices are not of the same size.
(d) $A C \quad$ This is undefined. C does not have the same number of rows as A does columns.
(e) $A C^{T}\left[\begin{array}{rr}-6 & -12 \\ 7 & 14 \\ -10 & -20\end{array}\right]$
(f) $C^{T} C\left[\begin{array}{rrr}5 & 10 & -20 \\ 10 & 20 & -40 \\ -20 & -40 & 80\end{array}\right] \quad$ As an aside, note that $\left(C^{T} C\right)^{T}=C^{T} C$ as expected.

There is a necessary symmetry to the entries of this product.
(6) Evaluate the determinant of each matrix.
(a) $\left|\begin{array}{cccc}3 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 1 & -1 & 0 & 1 \\ 0 & 4 & 0 & 2\end{array}\right|=0 \quad$ (b) $\left|\begin{array}{ccc}2 & 1 & -1 \\ 3 & 2 & 0 \\ -2 & 0 & -2\end{array}\right|=-6 \quad$ (c) $\left|\begin{array}{ccc}2 & 1 & -1 \\ 0 & k & 3 \\ 0 & 0 & k-1\end{array}\right|=2 k(k-1)$
(7) Find all values of x such that $\operatorname{det}(A)=0$ where $A=\left[\begin{array}{cc}x-1 & 3 \\ 2 & x\end{array}\right] . \quad x=-2, \quad$ or $\quad x=3$
(8) Solve the following system of equations twice, first using a matrix inverse, and then using Crammer's rule.

$$
\begin{array}{r}
2 x_{1}-4 x_{2}=5 \\
-3 x_{1}+2 x_{2}=0
\end{array} \quad\left(-\frac{5}{4},-\frac{15}{8}\right)
$$

(9) Use the row reduction algorithm to find the inverse matrix if it exists.

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

(10) Find the volume of the parallelepiped determined by the vectors $\mathbf{u}=(1,0,-1), \mathbf{v}=$ $(2,1,1)$, and $\mathbf{w}=(0,-3,3) . V=\operatorname{det}([\mathbf{u} \mathbf{v} \mathbf{w}])=12$
(11) Determine if the given set is a subspace of \mathbb{R}^{3}.The answers I'm giving here would NOT be sufficient if you gave them on a test. You are expected to justify your claims. I'm just providing you a way to double check your understanding.
(a) $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=x_{2}+x_{3}\right\} \quad$ It is. Check the three criteria, or identify a spanning set.
(b) $S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}-x_{3}=1\right\} \quad$ It is not. In particular, 0 is not in it.
(12) Let \mathbb{P}_{2} denote the set of all polynomials of degree less than or equal to 2 . Determine if the following sets are subspaces of \mathbb{P}_{2}. Again, I 'd expect justification for such a claim on an exam.
(a) $S=\left\{a t^{2}+b t+c \mid a>0\right\} \quad$ It is not. In particular, 0 is not in it.
(b) $S=\left\{\mathbf{p}(t) \in \mathbb{P}_{2} \mid \mathbf{p}(1)=0\right.$ and $\left.\mathbf{p}(0)=0\right\} \quad$ It is. Check the three criteria, or identify a spanning set.
(13) Find a matrix A such that the given set is $\operatorname{Col} A$.

$$
\left\{\left[\begin{array}{c}
b-c \\
2 b+c+d \\
5 c-4 d \\
d
\end{array}\right]: b, c, d \text { in } \mathbb{R}\right\} \quad A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
2 & 1 & 1 \\
0 & 5 & -4 \\
0 & 0 & 1
\end{array}\right]
$$

(14) Find a spanning set for $\operatorname{Nul} A$ and a spanning set for $\operatorname{Col} A$ where
(a) $A=\left[\begin{array}{rrrr}3 & 6 & 1 & -6 \\ 2 & 4 & 1 & -5\end{array}\right] \quad \operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 1\end{array}\right]\right\}, \quad \operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}3 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
(b) $A=\left[\begin{array}{rrrrr}1 & 3 & 4 & -1 & 2 \\ 2 & 6 & 6 & 0 & -3 \\ 3 & 9 & 3 & 6 & -3 \\ 3 & 9 & 0 & 9 & 0\end{array}\right] \quad \operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{r}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-3 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$,

$$
\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
6 \\
3 \\
0
\end{array}\right],\left[\begin{array}{r}
2 \\
-3 \\
-3 \\
0
\end{array}\right]\right\}
$$

Note that in the above, if the term Span was not put in front of the curly brackets, the answer would be WRONG. Be careful to use proper notation. Expecting me to read your mind and just know what you were thinking is risky (and perhaps delusional).

