Solutions to Review for Exam III

MATH 1112 sections 54 Spring 2019
Sections Covered: 6.4, 6.1, 6.2, 6.3, 6.5, 6.6, 7.4 (In Miller: 5.1-5.7 all)
Calculator Policy: Calculator use may be allowed on part of the exam. When instructions call for an exact solution, that indicates that a decimal approximation will not be accepted.

Problems marked with a blue asterisk * have detailed.
(1) Given one trigonometric value of an acute angle, find the remaining five trigonometric valuses.

$$
\cot \alpha=\frac{a d j}{o p p} \text { set } a d j=3, o p p=1
$$

(a) $\cot \alpha=3$ * $c^{2}=1^{2}+3^{2}=10 \quad c=\sqrt{10}$
(b) $\sec \beta=\frac{7}{2}$
(c) $\sin \sigma=\frac{12}{13}$

$$
\sin \alpha=\frac{1}{\sqrt{10}} \quad \csc \alpha=\sqrt{10}
$$

$$
\tan \alpha=\frac{1}{3}
$$

$$
\cos \alpha=\frac{3}{\sqrt{10}} \quad \sec \alpha=\frac{\sqrt{10}}{3}
$$

See the end for (a) worked out.
(b) $\quad \sin \beta=\frac{\sqrt{45}}{7}, \quad \cos \beta=\frac{2}{7}, \quad \tan \beta=\frac{\sqrt{45}}{2}, \quad \cot \beta=\frac{2}{\sqrt{45}}, \quad \csc \beta=\frac{7}{\sqrt{45}}$

$$
\text { (c) } \quad \sec \sigma=\frac{13}{5}, \quad \cos \sigma=\frac{5}{13}, \quad \tan \sigma=\frac{12}{5}, \quad \cot \sigma=\frac{5}{12}, \quad \csc \sigma=\frac{13}{12}
$$

(2) Evaluate each expression exactly without a calculator.
(a) $\sin 30^{\circ} \cos 45^{\circ}=\frac{1}{2 \sqrt{2}}$
(b) $\csc 60^{\circ}=\frac{2}{\sqrt{3}}$
(c) $\sin 60^{\circ}-2 \sin 30^{\circ} \cos 30^{\circ}=0$
(3) Suppose the angle θ has terminal side in quadrant III when in standard position and that $\tan \theta=\frac{7}{6}$ determine the remaining five trigonometric values of $\theta \cdot \sin \theta=-\frac{7}{\sqrt{85}}, \cos \theta=-\frac{6}{\sqrt{85}}$, the others are readily deduced from here.
(4) A regular pentagon is inscribed in a circle of radius 10. Find the perimeter of the pentagon. * See pages @ the end
(5) From a hot air balloon 2 km high, the angles of depression of two towns in line with the balloon and on the same side of the balloon are 81° and 13°. How far apart are the towns (to the nearest km)? *
(6) Evaluate each trigonometric expression exactly if it exists. (Check with a calculator, but be able to do this without one. You can be sure I will ask you to do so on an exam.)
(a) $\quad \cos \left(\frac{3 \pi}{2}\right)=0$
(b) $\cot (2 \pi)$ undefined
(c) $\quad \csc \left(\frac{5 \pi}{6}\right)=2$
(d) $\sin \left(\frac{11 \pi}{6}\right)=-\frac{1}{2}$
(e) $\quad \tan \left(\frac{3 \pi}{4}\right)=-1$
(f) $\quad \cos \left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$
(g) $\sec \left(\frac{5 \pi}{2}\right)$ undefined
(h) $\sec \left(\frac{2 \pi}{3}\right)=-2$
(i) $\quad \tan \left(\frac{5 \pi}{3}\right)=-\sqrt{3}$
(7) State the domain and range of each of the six trigonometric functions. Use interval notation or set builder notation.

Function	Domain	Range
$y=\sin x$	$(-\infty, \infty)$	$[-1,1]$
$y=\cos x$	$(-\infty, \infty)$	$[-1,1]$
$y=\tan x$	$\left\{x: x \neq \frac{\pi}{2}+k \pi\right.$, for integer $\left.k\right\}$	$(-\infty, \infty)$
$y=\csc x$	$\{x: x \neq k \pi$ for integer $k\}$	$(-\infty,-1] \cup[1, \infty)$
$y=\sec x$	$\left\{x: x \neq \frac{\pi}{2}+k \pi\right.$, for integer $\left.k\right\}$	$(-\infty,-1] \cup[1, \infty)$
$y=\cot x$	$\{x: x \neq k \pi$ for integer $k\}$	$(-\infty, \infty)$

(8) Identify the amplitude and period of each of each function.
(a) $\quad f(x)=-3 \cos \left(\frac{x}{2}\right)-2$
(b) $g(x)=4-4 \sin \left(\pi x+\frac{\pi}{6}\right)$
(c) $\quad F(x)=4 \sin \left(\frac{\pi}{4}-2 x\right)$

For $y=a \cos (b x-c)+d$ (or the version with a sine function), amplitude is $|a|$, and period is $\frac{2 \pi}{|b|}$. So (a) has amplitude 3 and period 4π; (b) has amplitude 4 and period 2 ; (c) has amplitude 4 and period π.
(9) State the domain and the range of each of $f(x)=\sin ^{-1}(x), g(x)=\cos ^{-1}(x)$ and $H(x)=$ $\tan ^{-1}(x)$ using interval notation.

Function	Domain	Range
$y=\sin ^{-1} x$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$y=\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$
$y=\tan ^{-1} x$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

(10) Evaluate each expression exactly if it exists. If it doesn't exist, state why.
(a) $\sin \left(\sin ^{-1} 0.02\right)=0.02$
(b) $\sin ^{-1}(\sin 0.02)=0.02$
(c) $\sin ^{-1}[\sin (\pi)]=0 \sin \pi=0$ and $\sin ^{-1} 0=0$
(d) $\cos ^{-1}\left[\cos \left(-\frac{\pi}{4}\right)\right]=\frac{\pi}{4}, \quad \cos \left(-\frac{p i}{4}\right)=\frac{1}{\sqrt{2}}$ and $\cos ^{-1} \frac{1}{\sqrt{2}}=\frac{\pi}{4}$
(e) $\cos \left(\tan ^{-1} 4\right)=\frac{1}{\sqrt{17}} *$
(f) $\csc \left[\cos ^{-1}\left(\frac{2}{3}\right)\right]=\frac{3}{\sqrt{5}}$ Draw a triangle in quadrant I with adjacent leg 2 and hypotenuse 3 .
(11) Plot at least two full periods of each of $y=\sin x, y=\cos x$, and $y=\tan x$. Plot these and compare your graphs to the lecture slides or to an image you create in Desmos, Wolfram Alpha, or a graphing calculator.
(12) Match the following functions with the plots shown. Note that not all of the functions will be used.
(a) $\quad f(x)=2-\cos \left(x+\frac{\pi}{4}\right) \quad(v i)$
(b) $f(x)=\sin (4 x)$
(i) (c) $f(x)=-2 \sin (2 x)+1$
(d) $f(x)=-3 \cos x+1$ NA
(e) $f(x)=-\cos (3 x)+1$
(ii)
(f) $\quad f(x)=\frac{1}{2} \sin (2 x)-2$
(g) $\quad f(x)=2+\cos \left(\frac{\pi x}{4}-\frac{\pi}{2}\right)$
NA
(h) $\quad f(x)=\cos \left(\frac{x}{4}\right) \quad(i v)$
(i) $\quad f(x)=\sin \left(x-\frac{\pi}{4}\right)$

4)

Angle $\theta=\frac{360^{\circ}}{5}=72^{\circ}$

(s equal angles in the circle)

Consider the yellow triangle

The base is $\frac{1}{5}$ th the perimeter, one of the S sides

From the 72° angle, drop a perpendicular to get a right triangle. $\frac{1}{2}\left(72^{\circ}\right)=36^{\circ}$

$$
10 \int_{x} \prod^{\circ} \left\lvert\, \frac{x}{10}=\sin 36^{\circ} \Rightarrow x=10 \sin 36^{\circ}\right.
$$

wow $x=\frac{1}{2}\left(\frac{1}{5} p\right)=\frac{1}{10} p$ so to get P, multi, pl, by 10

$$
P=10 x=10\left(10 \sin 36^{\circ}\right)=100 \sin 36^{\circ} \approx 58.8 \text { units }
$$

5)

Here's a diagram The distance between towns is $x-y$ from this picture

From the diagren

$$
\begin{aligned}
& \frac{x}{2 \mathrm{~km}}=\cot 13^{\circ}, \quad \frac{y}{2}=\operatorname{km} \\
& x=2 \cot 81^{\circ} \\
& 13^{\circ} \mathrm{km}, y=2 \cot 81^{\circ} \mathrm{km}
\end{aligned}
$$

The distance between towns is

$$
d=x-y=2\left(\cot 13^{\circ}-\cot 81^{\circ}\right) \mathrm{kn} \approx 8.3 \mathrm{~km}
$$

10 e) $\cos \left(\tan ^{-1} 4\right)$ Let $\theta=\tan ^{-1} 4$. Thin $\tan \theta=4$ and

$$
-\pi / 2<\theta<\pi / 2
$$

Since $\tan \theta=4>0, \theta$ is in quad I

Draw a representative triangle $o p p=4, \operatorname{adj}=1$

$$
\operatorname{lop}=\sqrt{4^{2}+1^{2}}=\sqrt{17}
$$

Then $\cos \theta=\frac{1}{\sqrt{17}}$, that is $\cos \left(\tan ^{-1} 4\right)=\frac{1}{\sqrt{17}}$

