Review for Exam 3 MATH 1112 sections 52 Spring 2020

Sections Covered In Miller: 5.5, 5.6, 5.7, 6.1, 6.2 (plus equations of lines; this covers homeworks 8, 9, and 10)

Calculator Policy: Calculator use won't be allowed on this exam. There won't be tedious calculations, but may be some basic arithmetic.

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.

Potentially useful formulas: (these will be provided)

 $\sin(u \pm v) = \sin u \cos v \pm \sin v \cos u$ $\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$ $\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$

1. Fill in the missing values in the table of trigonometric values for select angles. You may wish to do this from memory or by making use of convenient right triangles.

θ°	0°	30°	45°	60°	90°
heta radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos heta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

Note that numbers can be written in alternative, equivalent ways. For example, $\frac{1}{\sqrt{2}}$ and $\frac{\sqrt{2}}{2}$ are the same.

2. Evaluate each trigonometric expression exactly if it exists. (Check with a calculator, but be able to do this without one. You can be sure I will ask you to do so on an exam.)

- (a) $\cos\left(\frac{3\pi}{2}\right) = 0$ (c) $\csc\left(\frac{5\pi}{6}\right) = 2$ (b) $\cot(2\pi)$ undefined
- (d) $\sin\left(\frac{11\pi}{6}\right) = -\frac{1}{2}$ (e) $\tan\left(\frac{3\pi}{4}\right) = -1$ (f) $\cos\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}}$ (g) $\sec\left(\frac{5\pi}{2}\right)$ undefined (h) $\sec\left(\frac{2\pi}{3}\right) = -2$ (i) $\tan\left(\frac{5\pi}{3}\right) = -\sqrt{3}$

- 3. Find the remaining trigonometric values of the angle described.
 - (a) $\tan \theta = \frac{7}{6}$, with terminal side in quadrant 3 $\sin \theta = -\frac{7}{\sqrt{85}}$, $\cos \theta = -\frac{6}{\sqrt{85}}$, $\cot \theta = \frac{6}{7}$, $\csc \theta = -\frac{\sqrt{85}}{7}$, $\sec \theta = -\frac{\sqrt{85}}{6}$ (b) $\sin x = -\frac{4}{5}$, with terminal side in quadrant 4 $\tan x = -\frac{4}{3}$, $\cos \theta = \frac{3}{5}$, $\cot \theta = -\frac{3}{4}$, $\csc \theta = -\frac{5}{4}$, $\sec \theta = \frac{5}{3}$ (c) $\sec \phi = -6$ with terminal side in quadrant 2 $\cos \phi = -\frac{1}{6}$, $\sin \phi = \frac{\sqrt{35}}{6}$, $\tan \phi = -\sqrt{35}$, $\cot \phi = -\frac{1}{\sqrt{35}}$, $\csc \phi = \frac{6}{\sqrt{35}}$
- 4. Evaluate each expression exactly.

(a)
$$\sin(70^\circ)\cos(25^\circ) - \sin(25^\circ)\cos(70^\circ) = \sin(45^\circ) = \frac{1}{\sqrt{2}}$$

(b)
$$\cos(27^\circ)\cos(3^\circ) - \sin(27^\circ)\sin(3^\circ) = \cos(30^\circ) = \frac{\sqrt{3}}{2}$$

(c)
$$\frac{\tan\left(\frac{5\pi}{36}\right) + \tan\left(\frac{\pi}{9}\right)}{1 - \tan\left(\frac{5\pi}{36}\right)\tan\left(\frac{\pi}{9}\right)} = \tan\frac{\pi}{4} = 1$$

5. State the domain and range of each of the six trigonometric functions. Use interval notation or set builder notation.

Function	Domain	Range
$y = \sin x$	$(-\infty,\infty)$	[-1,1]
$y = \cos x$	$(-\infty,\infty)$	[-1, 1]
$y = \tan x$	$\left\{x : x \neq \frac{\pi}{2} + k\pi, \text{ for integer } k\right\}$	$(-\infty,\infty)$
$y = \csc x$	$\{x : x \neq k\pi \text{ for integer } k\}$	$(-\infty,-1]\cup[1,\infty)$
$y = \sec x$	$\left\{x : x \neq \frac{\pi}{2} + k\pi, \text{ for integer } k\right\}$	$(-\infty,-1] \cup [1,\infty)$
$y = \cot x$	$\{x : x \neq k\pi \text{ for integer } k\}$	$(-\infty,\infty)$

Another way of saying

$$x \neq \frac{\pi}{2} + k\pi$$
, for integer k is to say $x \neq \frac{k\pi}{2}$, for odd integer k.

6. State the domain and the range of each of $f(x) = \sin^{-1}(x)$, $g(x) = \cos^{-1}(x)$ and $H(x) = \tan^{-1}(x)$ using interval notation.

Function	Domain	Range
$y = \sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2} ight]$
$y = \cos^{-1} x$	[-1, 1]	$[0,\pi]$
$y = \tan^{-1} x$	$(-\infty,\infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$