Review for Exam 3
 MATH 1112 sections 52 Spring 2020

Sections Covered In Miller: 5.5, 5.6, 5.7, 6.1, 6.2 (plus equations of lines; this covers homeworks 8,9 , and 10)

Calculator Policy: Calculator use won't be allowed on this exam. There won't be tedious calculations, but may be some basic arithmetic.

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.

Potentially useful formulas: (these will be provided)

$$
\begin{aligned}
& \sin (u \pm v)=\sin u \cos v \pm \sin v \cos u \\
& \cos (u \pm v)=\cos u \cos v \mp \sin u \sin v \\
& \tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}
\end{aligned}
$$

1. Fill in the missing values in the table of trigonometric values for select angles. You may wish to do this from memory or by making use of convenient right triangles.

θ°	0°	30°	45°	60°	90°
θ radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

Note that numbers can be written in alternative, equivalent ways. For example, $\frac{1}{\sqrt{2}}$ and $\frac{\sqrt{2}}{2}$ are the same.
2. Evaluate each trigonometric expression exactly if it exists. (Check with a calculator, but be able to do this without one. You can be sure I will ask you to do so on an exam.)
(a) $\quad \cos \left(\frac{3 \pi}{2}\right)=0$
(b) $\cot (2 \pi)$ undefined
(c) $\quad \csc \left(\frac{5 \pi}{6}\right)=2$
(d) $\quad \sin \left(\frac{11 \pi}{6}\right)=-\frac{1}{2}$
(e) $\tan \left(\frac{3 \pi}{4}\right)=-1$
(f) $\quad \cos \left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}}$
(g) $\sec \left(\frac{5 \pi}{2}\right)$ undefined
(h) $\quad \sec \left(\frac{2 \pi}{3}\right)=-2$
(i) $\tan \left(\frac{5 \pi}{3}\right)=-\sqrt{3}$
3. Find the remaining trigonometric values of the angle described.
(a) $\tan \theta=\frac{7}{6}$, with terminal side in quadrant 3

$$
\sin \theta=-\frac{7}{\sqrt{85}}, \cos \theta=-\frac{6}{\sqrt{85}}, \cot \theta=\frac{6}{7}, \csc \theta=-\frac{\sqrt{85}}{7}, \sec \theta=-\frac{\sqrt{85}}{6}
$$

(b) $\sin x=-\frac{4}{5}$, with terminal side in quadrant 4

$$
\tan x=-\frac{4}{3}, \cos \theta=\frac{3}{5}, \cot \theta=-\frac{3}{4}, \csc \theta=-\frac{5}{4}, \sec \theta=\frac{5}{3}
$$

(c) $\sec \phi=-6$ wiih terminal side in quadrant 2

$$
\cos \phi=-\frac{1}{6}, \sin \phi=\frac{\sqrt{35}}{6}, \tan \phi=-\sqrt{35}, \cot \phi=-\frac{1}{\sqrt{35}}, \csc \phi=\frac{6}{\sqrt{35}}
$$

4. Evaluate each expression exactly.
(a) $\sin \left(70^{\circ}\right) \cos \left(25^{\circ}\right)-\sin \left(25^{\circ}\right) \cos \left(70^{\circ}\right)=\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
(b) $\cos \left(27^{\circ}\right) \cos \left(3^{\circ}\right)-\sin \left(27^{\circ}\right) \sin \left(3^{\circ}\right)=\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$
(c) $\frac{\tan \left(\frac{5 \pi}{36}\right)+\tan \left(\frac{\pi}{9}\right)}{1-\tan \left(\frac{5 \pi}{36}\right) \tan \left(\frac{\pi}{9}\right)}=\tan \frac{\pi}{4}=1$
5. State the domain and range of each of the six trigonometric functions. Use interval notation or set builder notation.

Function	Domain	Range
$y=\sin x$	$(-\infty, \infty)$	$[-1,1]$
$y=\cos x$	$(-\infty, \infty)$	$[-1,1]$
$y=\tan x$	$\left\{x: x \neq \frac{\pi}{2}+k \pi\right.$, for integer $\left.k\right\}$	$(-\infty, \infty)$
$y=\csc x$	$\{x: x \neq k \pi$ for integer $k\}$	$(-\infty,-1] \cup[1, \infty)$
$y=\sec x$	$\left\{x: x \neq \frac{\pi}{2}+k \pi\right.$, for integer $\left.k\right\}$	$(-\infty,-1] \cup[1, \infty)$
$y=\cot x$	$\{x: x \neq k \pi$ for integer $k\}$	$(-\infty, \infty)$

Another way of saying

$$
x \neq \frac{\pi}{2}+k \pi, \text { for integer } k \text { is to say } x \neq \frac{k \pi}{2}, \text { for odd integer } k .
$$

6. State the domain and the range of each of $f(x)=\sin ^{-1}(x), g(x)=\cos ^{-1}(x)$ and $H(x)=$ $\tan ^{-1}(x)$ using interval notation.

Function	Domain	Range
$y=\sin ^{-1} x$	$[-1,1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$y=\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$
$y=\tan ^{-1} x$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

