## **Review for Exam III**

## MATH 1113 sections 51 & 52 Fall 2018

Sections Covered: 2.2 (diff. quotient), 2.1 (piecewise fnct), 5.1, 5.2, 5.3, 5.4, 5.5, 6.1 & 6.2Calculator Policy: Calculator use may be allowed on part of the exam. When instructions call for an exact solution, that indicates that a decimal approximation will not be accepted.

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.

(1) Let  $f(x) = \begin{cases} 2x - 1, -2 \le x \le 1 \\ 0, & 1 < x < 2 \\ 1, & x = 2 \\ 5 - x^2, & 2 < x \le 3 \end{cases}$  Evaluate each of the following if possible. If a

quantity doesn't exist, you can write "DNE." Where applicable, assume that 0 < h < 0.1.

(a) f(0) (b)  $f(\frac{5}{2})$ (c) f(4) (d) f(1+h)(e) f(1-h) (f) f(2+h)

(2) Provide a sketch of each piecewise defined function. Identify the domain and range of each function.

(a) 
$$f(x) = \begin{cases} 2x - 1, & -2 \le x \le 1\\ 0, & 1 < x < 2\\ 1, & x = 2\\ 5 - x^2, & 2 < x \le 3 \end{cases}$$
  
(b) 
$$g(x) = \begin{cases} x + 2, & -3 < x < -1\\ x^2, & -1 < x < 1\\ 3 - x, & 1 \le x \le 3 \end{cases}$$
  
(c) 
$$h(x) = \begin{cases} e^{-x}, & -1 \le x \le 0\\ \ln(x+1), & 0 < x \end{cases}$$

(3) For each function and given value for *a*, evaluate the difference quotient  $\frac{f(a+h) - f(a)}{h}$ . Simplify your answer. (a)  $f(x) = 2x^2 - x$ , for a = -1(b)  $f(x) = \frac{1}{x^2 + 3}$ , for a = 0

(4) For each function given in exercise (3), evaluate  $\frac{f(x+h) - f(x)}{h}$  for any x in the domain of the function. Simplify to the extent possible.

(5) Let  $y = \log_a(M)$  so that  $a^y = M$ . Take the logarithm base b of both sides of the exponential equation, and using logarithm properties derive the change of base formula. (That is, show that  $\log_b(M) = \frac{\log_a(M)}{\log_a(b)}$ .)

(6) Identify each statement as true or false. (Full disclosure, some of these statements are embarrassingly ludicrous.)

(a) 
$$\frac{\ln(x)}{x} = \ln$$
  
(b)  $\log_4(x) = \frac{\log_5(x)}{\log_5(4)}$   
(c)  $(e^x)^2 = e^{2x}$   
(d)  $\ln x = \frac{1}{x}$   
(e)  $\log_a(x - y) = \frac{\log_a(x)}{\log_a(y)}$   
(f)  $\log(8^9) = 9\log(8)$   
(g)  $e^{9x} = 9e^x$ 

(7) Each of the following functions is one to one on the indicated interval. Identify the inverse function.

(a)  $f(x) = \frac{5x+3}{x-4}$ (b)  $g(x) = 3x^5 + 7$ (c)  $S(x) = e^{2x^3}$ 

(8) Use composition to show that the given functions are inverses.

$$f(x) = \sqrt[5]{\frac{x-1}{2x}}$$
 and  $f^{-1}(x) = \frac{1}{1-2x^5}$ 

(9) Evaluate each expression without a calculator

(a) 
$$\log_3(1)$$
 (b)  $\log_2 \frac{1}{32}$  (c)  $\ln \sqrt{e}$ 

(d)  $\log(0.0001)$  (e)  $\log_4(2^7)$  (f)  $\log_\pi \pi$ 

(10) Express as a single logarithm. Simplify if possible.

(a) 
$$4\ln x + \frac{1}{3}\ln y - 2\ln z$$
 (b)  $\log_2(x^3 - 8) - \log_2(x^2 + 2x + 4)$ 

(11) Expand as a sum or difference of logarithms.

(a) 
$$\ln \sqrt[4]{wr^2}$$
 (b)  $\log \sqrt[3]{\frac{M^2}{N}}$ 

(12) Produce a plot of each function. Label any asymptotes and intercepts.

(a) 
$$y = e^{x-1}$$
  
(b)  $f(t) = \ln(-t)$   
(c)  $g(x) = e^x + 2$   
(d)  $y = \log_{1/2} x$ 

(13) Solve each equation. Obtain an exact solution.

(14) Given one trigonometric value of an acute angle, find the remaining five trigonometric values.

(a)  $\cot \alpha = 3$ (b)  $\sec \beta = \frac{7}{2}$ (c)  $\sin \sigma = \frac{12}{13}$ 



(15) The variables used in this problem are defined in the figure above Use the given information to solve for the remaining side lengths and indicated trigonometric values.

- (i) c = 6 and  $\sin \theta = \frac{2}{3}$ . Find  $a, b, \cos \theta$  and  $\tan \theta$ .
- (ii) a = 1 and  $\tan \phi = 5$ . Find b, c,  $\sin \theta$  and  $\sin \phi$ .

(iii) 
$$b = 4$$
 and  $\cos \phi = \frac{1}{\sqrt{5}}$ . Find  $a, c, \sin \phi$  and  $\tan \phi$ .

(16) Evaluate each expression exactly without a calculator.

- (a)  $\sin 30^{\circ} \cos 45^{\circ}$
- (b) csc 60°
- (c)  $\sin 60^{\circ} 2 \sin 30^{\circ} \cos 30^{\circ}$

(17) A regular pentagon is inscribed in a circle of radius 10. Find the perimeter of the pentagon.

(18) From a hot air balloon 2 km high, the angles of depression of two towns in line with the balloon and on the same side of the balloon are  $81^{\circ}$  and  $13^{\circ}$ . How far apart are the towns (to the nearest km)?