Review for Exam III

MATH 1113 sections 51 \& 52 Fall 2018

Sections Covered: 2.2 (diff. quotient), 2.1 (piecewise fnct), 5.1, 5.2, 5.3, 5.4, 5.5, $6.1 \& 6.2$
Calculator Policy: Calculator use may be allowed on part of the exam. When instructions call for an exact solution, that indicates that a decimal approximation will not be accepted.

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Let $f(x)=\left\{\begin{array}{lc}2 x-1, & -2 \leq x \leq 1 \\ 0, & 1<x<2 \\ 1, & x=2 \\ 5-x^{2}, & 2<x \leq 3\end{array}\right.$ Evaluate each of the following if possible. If a quantity doesn't exist, you can write "DNE." Where applicable, assume that $0<h<0.1$.
(a) $\quad f(0)$
(b) $\quad f\left(\frac{5}{2}\right)$
(c) $\quad f(4)$
(d) $\quad f(1+h)$
(e) $\quad f(1-h)$
(f) $\quad f(2+h)$
(2) Provide a sketch of each piecewise defined function. Identify the domain and range of each function.
(a) $f(x)=\left\{\begin{array}{lc}2 x-1, & -2 \leq x \leq 1 \\ 0, & 1<x<2 \\ 1, & x=2 \\ 5-x^{2}, & 2<x \leq 3\end{array}\right.$
(b) $g(x)=\left\{\begin{array}{lc}x+2, & -3<x<-1 \\ x^{2}, & -1<x<1 \\ 3-x, & 1 \leq x \leq 3\end{array}\right.$
(c) $h(x)=\left\{\begin{array}{lc}e^{-x}, & -1 \leq x \leq 0 \\ \ln (x+1), & 0<x\end{array}\right.$
(3) For each function and given value for a, evaluate the difference quotient $\frac{f(a+h)-f(a)}{h}$. Simplify your answer.
(a) $f(x)=2 x^{2}-x$, for $\quad a=-1$
(b) $f(x)=\frac{1}{x^{2}+3}, \quad$ for $\quad a=0$
(4) For each function given in exercise (3), evaluate $\frac{f(x+h)-f(x)}{h}$ for any x in the domain of the function. Simplify to the extent possible.
(5) Let $y=\log _{a}(M)$ so that $a^{y}=M$. Take the logarithm base b of both sides of the exponential equation, and using logarithm properties derive the change of base formula. (That is, show that $\left.\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}.\right)$
(6) Identify each statement as true or false. (Full disclosure, some of these statements are embarrassingly ludicrous.)
(a) $\frac{\ln (x)}{x}=\ln$
(b) $\log _{4}(x)=\frac{\log _{5}(x)}{\log _{5}(4)}$
(c) $\left(e^{x}\right)^{2}=e^{2 x}$
(d) $\ln x=\frac{1}{x}$
(e) $\log _{a}(x-y)=\frac{\log _{a}(x)}{\log _{a}(y)}$
(f) $\log \left(8^{9}\right)=9 \log (8)$
(g) $e^{9 x}=9 e^{x}$
(7) Each of the following functions is one to one on the indicated interval. Identify the inverse function.
(a) $f(x)=\frac{5 x+3}{x-4}$
(b) $g(x)=3 x^{5}+7$
(c) $S(x)=e^{2 x^{3}}$
(8) Use composition to show that the given functions are inverses.

$$
f(x)=\sqrt[5]{\frac{x-1}{2 x}} \quad \text { and } \quad f^{-1}(x)=\frac{1}{1-2 x^{5}}
$$

(9) Evaluate each expression without a calculator
(a) $\quad \log _{3}(1)$
(b) $\quad \log _{2} \frac{1}{32}$
(c) $\ln \sqrt{e}$
(d) $\log (0.0001)$
(e) $\quad \log _{4}\left(2^{7}\right)$
(f) $\log _{\pi} \pi$
(10) Express as a single logarithm. Simplify if possible.
(a) $4 \ln x+\frac{1}{3} \ln y-2 \ln z$
(b) $\log _{2}\left(x^{3}-8\right)-\log _{2}\left(x^{2}+2 x+4\right)$
(11) Expand as a sum or difference of logarithms.
(a) $\ln \sqrt[4]{w r^{2}}$
(b) $\log \sqrt[3]{\frac{M^{2}}{N}}$
(12) Produce a plot of each function. Label any asymptotes and intercepts.
(a) $y=e^{x-1}$
(b) $\quad f(t)=\ln (-t)$
(c) $g(x)=e^{x}+2$
(d) $y=\log _{1 / 2} x$
(13) Solve each equation. Obtain an exact solution.
(a) $\log _{3}(x)+\log _{3}(x+1)=\log _{3}(2)+\log _{3}(x+3)$
(b) $\log _{3}\left(x^{2}+x\right)=\log _{3}(2)+\log _{3}(x+3)$
(c) $e^{x}+e^{-x}=3$
(d) $5^{x+1}=3^{2 x-1}$
(14) Given one trigonometric value of an acute angle, find the remaining five trigonometric values.
(a) $\cot \alpha=3$
(b) $\sec \beta=\frac{7}{2}$
(c) $\sin \sigma=\frac{12}{13}$

(15) The variables used in this problem are defined in the figure above Use the given information to solve for the remaining side lengths and indicated trigonometric values.
(i) $c=6$ and $\sin \theta=\frac{2}{3}$. Find $a, b, \cos \theta$ and $\tan \theta$.
(ii) $a=1$ and $\tan \phi=5$. Find $b, c, \sin \theta$ and $\sin \phi$.
(iii) $b=4$ and $\cos \phi=\frac{1}{\sqrt{5}}$. Find $a, c, \sin \phi$ and $\tan \phi$.
(16) Evaluate each expression exactly without a calculator.
(a) $\sin 30^{\circ} \cos 45^{\circ}$
(b) $\csc 60^{\circ}$
(c) $\sin 60^{\circ}-2 \sin 30^{\circ} \cos 30^{\circ}$
(17) A regular pentagon is inscribed in a circle of radius 10. Find the perimeter of the pentagon.
(18) From a hot air balloon 2 km high, the angles of depression of two towns in line with the balloon and on the same side of the balloon are 81° and 13°. How far apart are the towns (to the nearest km)?

