Solutions to Review for Exam III

MATH 1113 sections 51 \& 52 Fall 2018

Sections Covered: 2.2 (diff. quotient), 2.1 (piecewise fnct), 5.1, 5.2, 5.3, 5.4, 5.5, $6.1 \& 6.2$
Calculator Policy: Calculator use may be allowed on part of the exam. When instructions call for an exact solution, that indicates that a decimal approximation will not be accepted.

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Let $f(x)=\left\{\begin{array}{lc}2 x-1, & -2 \leq x \leq 1 \\ 0, & 1<x<2 \\ 1, & x=2 \\ 5-x^{2}, & 2<x \leq 3\end{array}\right.$ Evaluate each of the following if possible. If a quantity doesn't exist, you can write "DNE." Where applicable, assume that $0<h<0.1$.
(a) $\quad f(0)=-1$
(b) $\quad f\left(\frac{5}{2}\right)=-\frac{5}{4}$
(c) $\quad f(4)$ DNE (not in domain)
(d) $\quad f(1+h)=0$
(e) $\quad f(1-h)=1-2 h$
(f) $\quad f(2+h)=1-4 h-h^{2}$
(2) Provide a sketch of each piecewise defined function. Identify the domain and range of each function. Hand drawn plots are at the end of this set of solutions.
(a) $f(x)=\left\{\begin{array}{lc}2 x-1, & -2 \leq x \leq 1 \\ 0, & 1<x<2 \\ 1, & x=2 \\ 5-x^{2}, & 2<x \leq 3\end{array}\right.$
(b) $g(x)=\left\{\begin{array}{lc}x+2, & -3<x<-1 \\ x^{2}, & -1<x<1 \\ 3-x, & 1 \leq x \leq 3\end{array}\right.$
(c) $h(x)=\left\{\begin{array}{lc}e^{-x}, & -1 \leq x \leq 0 \\ \ln (x+1), & 0<x\end{array}\right.$
(3) For each function and given value for a, evaluate the difference quotient $\frac{f(a+h)-f(a)}{h}$. Simplify your answer.
(a) $f(x)=2 x^{2}-x$, for $\quad a=-1$

$$
\begin{gathered}
\frac{f(a+h)-f(a)}{h}=\frac{f(-1+h)-f(-1)}{h}=\frac{2(-1+h)^{2}-(-1+h)-\left(2(-1)^{2}-(-1)\right)}{h}= \\
=\frac{2\left(1-2 h+h^{2}\right)+1-h-3}{h}=\frac{-5 h+2 h^{2}}{h}=\frac{h(2 h-5)}{h}=2 h-5
\end{gathered}
$$

(b) $f(x)=\frac{1}{x^{2}+3}, \quad$ for $\quad a=0 \quad \frac{f(0+h)-f(0)}{h}=-\frac{h}{3\left(h^{2}+3\right)}$
(4) For each function given in exercise (3), evaluate $\frac{f(x+h)-f(x)}{h}$ for any x in the domain of the function. Simplify to the extent possible.
(a) $\frac{f(x+h)-f(x)}{h}=4 x+2 h-1$
(b) $\frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{(x+h)^{2}+3}-\frac{1}{x^{2}+3}}{h}=\frac{\left(x^{2}+3\right)-\left((x+h)^{2}+3\right)}{h\left((x+h)^{2}+3\right)\left(x^{2}+3\right)}$

$$
\begin{gathered}
=\frac{x^{2}+3-\left(x^{2}+2 x h+h^{2}+3\right)}{h\left((x+h)^{2}+3\right)\left(x^{2}+3\right)}=\frac{-2 x h-h^{2}}{h\left((x+h)^{2}+3\right)\left(x^{2}+3\right)}= \\
=\frac{-h(2 x+h)}{h\left((x+h)^{2}+3\right)\left(x^{2}+3\right)}=\frac{-(2 x+h)}{\left((x+h)^{2}+3\right)\left(x^{2}+3\right)}
\end{gathered}
$$

(5) Let $y=\log _{a}(M)$ so that $a^{y}=M$. Take the logarithm base b of both sides of the exponential equation, and using logarithm properties derive the change of base formula. (That is, show that $\log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}$.) From $a^{y}=M$, using the power \log property

$$
\log _{b}(M)=\log _{b}\left(a^{y}\right)=y \log _{b}(a) .
$$

Solving for y, and recalling that $y=\log _{a}(M)$,

$$
y \log _{b}(a)=\log _{b}(M) \Longrightarrow y=\frac{\log _{a}(M)}{\log _{a}(b)} \quad \text { that is, } \quad \log _{b}(M)=\frac{\log _{a}(M)}{\log _{a}(b)}
$$

(6) Identify each statement as true or false. (Full disclosure, some of these statements are embarrassingly ludicrous.)
(a) $\frac{\ln (x)}{x}=\ln$ This is utter nonsense.
(b) $\log _{4}(x)=\frac{\log _{5}(x)}{\log _{5}(4)}$ True, this is an application of change of base.
(c) $\left(e^{x}\right)^{2}=e^{2 x}$ True by properties of exponents.
(d) $\ln x=\frac{1}{x}$ This is again some nonsense statement.
(e) $\log _{a}(x-y)=\frac{\log _{a}(x)}{\log _{a}(y)}$ False, this looks like an incorrect variation on a genuine property.
(f) $\log \left(8^{9}\right)=9 \log (8)$ True, this is the power property.
(g) $e^{9 x}=9 e^{x}$ False. It is true that $e^{9 x}=\left(e^{x}\right)^{9}$, but it's not $9 e^{x}$.
(7) Each of the following functions is one to one on the indicated interval. Identify the inverse function.
(a) $f(x)=\frac{5 x+3}{x-4} \quad$ Let $y=f(x)$, then switch x and y and solve for the new y.

$$
\begin{aligned}
x & =\frac{5 y+3}{y-4} \\
x(y-4) & =5 y+3 \\
x y-5 y & =4 x+3 \\
y(x-5) & =4 x+3 \\
y & =\frac{4 x+3}{x-5}
\end{aligned}
$$

$$
f^{-1}(x)=\frac{4 x+3}{x-5}
$$

(b) $g(x)=3 x^{5}+7 \quad g^{-1}(x)=\sqrt[5]{\frac{x-7}{3}}$.
(c) $S(x)=e^{2 x^{3}} \quad S^{-1}(x)=\sqrt[3]{\frac{\ln x}{2}}$.
(8) Use composition to show that the given functions are inverses.

$$
f(x)=\sqrt[5]{\frac{x-1}{2 x}} \quad \text { and } \quad f^{-1}(x)=\frac{1}{1-2 x^{5}}
$$

There are two compositions to consider, $\left(f \circ f^{-1}\right)(x)$ and $\left(f^{-1} \circ f\right)(x)$. Here's one of those

$$
\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}\left(\sqrt[5]{\frac{x-1}{2 x}}\right)=\frac{1}{1-2\left(\sqrt[5]{\frac{x-1}{2 x}}\right)^{5}}=
$$

$$
=\frac{1}{1-2\left(\frac{x-1}{2 x}\right)}=\frac{1}{1-\frac{x-1}{x}}=\frac{1}{1-\left(1-\frac{1}{x}\right)}=\frac{1}{\frac{1}{x}}=x
$$

So the function labeled as f^{-1} is definitely the inverse of f. The other composition should similarly result in $\left(f \circ f^{-1}\right)(x)=x$.

(9) Evaluate each expression without a calculator

(a) $\quad \log _{3}(1)=0$
(b) $\log _{2} \frac{1}{32}=-5$
(c) $\ln \sqrt{e}=\frac{1}{2}$
(d) $\log (0.0001)=-4$
(e) $\quad \log _{4}\left(2^{7}\right)=\frac{7}{2}$
(f) $\log _{\pi} \pi=1$
(10) Express as a single logarithm. Simplify if possible.
(a) $4 \ln x+\frac{1}{3} \ln y-2 \ln z=\ln \left(\frac{x^{4} \sqrt[3]{y}}{z^{2}}\right)$
(b) $\log _{2}\left(x^{3}-8\right)-\log _{2}\left(x^{2}+2 x+4\right)$

For (b), it helps to recall the difference of cubes $x^{2}-2^{3}=(x-2)\left(x^{2}+2 x+2^{2}\right)$.
(b) $\log _{2}\left(x^{3}-8\right)-\log _{2}\left(x^{2}+2 x+4\right)=\log _{2}\left(\frac{x^{3}-8}{x^{2}+2 x+4}\right)=\log _{2}\left(\frac{(x-2)\left(x^{2}+2 x+4\right)}{x^{2}+2 x+4}\right)=\log _{2}(x-2)$
(11) Expand as a sum or difference of logarithms.
(a) $\ln \sqrt[4]{w r^{2}}$
(b) $\quad \log \sqrt[3]{\frac{M^{2}}{N}}=\frac{2}{3} \log |M|-\frac{1}{3} \log (N)$
(a) $\ln \sqrt[4]{w r^{2}}=\ln \left(w r^{2}\right)^{1 / 4}=\frac{1}{4} \ln \left(w r^{2}\right)=\frac{1}{4}\left(\ln w+\ln r^{2}\right)=\frac{1}{4}(\ln w+2 \ln |r|)=\frac{1}{4} \ln w+\frac{1}{2} \ln |r|$.
(12) Produce a plot of each function. Label any asymptotes and intercepts. See plots at the end.
(a) $y=e^{x-1}$
(b) $f(t)=\ln (-t)$
(c) $g(x)=e^{x}+2$
(d) $y=\log _{1 / 2} x$
(13) Solve each equation. Obtain an exact solution.
(a) $\log _{3}(x)+\log _{3}(x+1)=\log _{3}(2)+\log _{3}(x+3)$

$$
\begin{gathered}
\log _{3}(x(x+1))=\log _{3}(2(x+3)) \Longrightarrow \log _{3}\left(x^{2}+x\right)=\log _{3}(2 x+6) \\
x^{2}+x=2 x+6 \Longrightarrow x^{2}-x-6=0 \Longrightarrow(x-3)(x+2)=0
\end{gathered}
$$

This suggests two solutions 3 and -2 . Plugging each into the original equation shows that 3 does solve the equation. However, $\log _{3}(-2)+\log _{3}(-2+1)$ isn't defined, so -2 is NOT a solution. The only solution is 3 . Contrast this with the results of problem (b).
(b) $\log _{3}\left(x^{2}+x\right)=\log _{3}(2)+\log _{3}(x+3) \quad 3$ and -2
(c) $e^{x}+e^{-x}=3 \ln \left(\frac{3+\sqrt{5}}{2}\right)$ and $\ln \left(\frac{3-\sqrt{5}}{2}\right)$ (Hint: multiply both sides by e^{x} to get a quadratic equation in e^{x}.)
(d) $5^{x+1}=3^{2 x-1} \frac{\ln 3+\ln 5}{2 \ln 3-\ln 5}$. The natural \log can be replaced with any other base.
(14) Given one trigonometric value of an acute angle, find the remaining five trigonometric values.
(a) $\cot \alpha=3$
(b) $\sec \beta=\frac{7}{2}$
(c) $\sin \sigma=\frac{12}{13}$

See the end for (a) worked out.
(b) $\quad \sin \beta=\frac{\sqrt{45}}{7}, \quad \cos \beta=\frac{2}{7}, \quad \tan \beta=\frac{\sqrt{45}}{2}, \quad \cot \beta=\frac{2}{\sqrt{45}}, \quad \csc \beta=\frac{7}{\sqrt{45}}$
(b) $\quad \sec \sigma=\frac{13}{5}, \quad \cos \sigma=\frac{5}{13}, \quad \tan \sigma=\frac{12}{5}, \quad \cot \sigma=\frac{5}{12}, \quad \csc \sigma=\frac{13}{12}$
(a) $\cot \alpha=3=\frac{a d j}{o p p}$

$\sin \alpha=\frac{1}{\sqrt{10}}$
$\cos \alpha=\frac{3}{\sqrt{10}}$
$\tan \alpha=\frac{1}{3}$
$\sec \alpha=\frac{\sqrt{10}}{3}$
$\csc \alpha=\sqrt{10}$

(15) The variables used in this problem are defined in the figure above Use the given information to solve for the remaining side lengths and indicated trigonometric values.
(i) $c=6$ and $\sin \theta=\frac{2}{3}$. Find $a, b, \cos \theta$ and $\tan \theta . a=4, b=2 \sqrt{5}, \cos \theta=\frac{\sqrt{5}}{3}$, and $\tan \theta=\frac{2}{\sqrt{5}}$
(ii) $a=1$ and $\tan \phi=5$. Find $b, c, \sin \theta$ and $\sin \phi . b=5, c=\sqrt{26}, \sin \theta=\frac{1}{\sqrt{26}}$, and $\sin \phi=\frac{5}{\sqrt{26}}$
(iii) $b=4$ and $\cos \phi=\frac{1}{\sqrt{5}}$. Find $a, c, \sin \phi$ and $\tan \phi \cdot \cos \phi=\frac{a}{c} \Longrightarrow c=\sqrt{5} a$. Since $a^{2}+b^{2}=c^{2}$,

$$
a^{2}+4^{2}=(\sqrt{5} a)^{2}=5 a^{2} \Longrightarrow 4 a^{2}=16 \Longrightarrow a=2
$$

Thus $a=2$ and $c=2 \sqrt{5}$ while $\sin \phi=\frac{4}{2 \sqrt{5}}=\frac{2}{\sqrt{5}}$ and $\tan \phi=\frac{4}{2}=2$.
(16) Evaluate each expression exactly without a calculator.
(a) $\sin 30^{\circ} \cos 45^{\circ}=\frac{1}{2 \sqrt{2}}$
(b) $\csc 60^{\circ}=\frac{2}{\sqrt{3}}$
(c) $\sin 60^{\circ}-2 \sin 30^{\circ} \cos 30^{\circ}=\frac{\sqrt{3}}{2}-2 \frac{1}{2} \frac{\sqrt{3}}{2}=0$
(17) A regular pentagon is inscribed in a circle of radius 10. Find the perimeter of the pentagon.

(18) From a hot air balloon 2 km high, the angles of depression of two towns in line with the below balloon and on the same side of the balloon are 81° and 13°. How far apart are the towns (to the nearest km)?

(b) Domain $(-3,-1) \cup(-1,3]$
 range $(-1,2]$

Seen from the soph
(c)

The range of ln x is
$(-\infty, \infty)$, so every y value from zero to ∞ will be on this graph
 $y=e^{x} \quad$ stiffed 1 unit right

$$
y=\ln t
$$

$$
\text { reflected in } y \text {-axis }
$$

$$
y=e^{x}
$$

$$
\text { shifted up } 2
$$

$12(2) \quad y=\log _{\frac{1}{2}} x$

17
The central angle $\theta=\frac{360^{\circ}}{5}=72^{\circ}$

Let l be the side length wise given $r=10$ we have a right triangle

$$
\begin{array}{ll}
r & \quad r=10, \frac{\theta}{2}=\frac{72^{\circ}}{2}=36^{\circ} \\
\frac{\theta}{2} \\
\frac{l}{2} & \sin \frac{\theta}{2}=\frac{l}{2}
\end{array}
$$

So $l=2 r \sin \frac{\theta}{2}=2 \cdot 10 \sin \left(36^{\circ}\right)$

There are 5 sides. The perimeter P sahsties

$$
P=5 l=5.2 .10 \sin 36^{\circ} \approx 58.8 \text { length units }
$$

18)

From the diagron

$$
\begin{aligned}
& \operatorname{Ton} 13^{\circ}=\frac{2 \mathrm{kn}}{B} \Rightarrow B=\frac{2}{\tan 13^{\circ}} \mathrm{km} \\
& \tan 81^{\circ}=\frac{2 \mathrm{kn}}{A} \Rightarrow A=\frac{2}{\tan 81^{\circ}} \mathrm{km}
\end{aligned}
$$

The distance between the towns d satishes

$$
\begin{aligned}
d=B-A & =\frac{2}{\tan 13^{\circ}} \mathrm{km}-\frac{2}{\tan 81^{\circ}} \mathrm{km} \\
& \approx 8.35 \mathrm{~km}
\end{aligned}
$$

To the nearest kilometer, the distana is 8 km .

