Review for Exam 3

MATH 1190 sec. 51
Sections Covered: 3.3 (Log. Diff), 4.5, 4.2, 4.3, 4.4, 4.8, 5.1, 5.2

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Find all critical numbers of the function.
(a) $\quad f(x)=x^{3}-6 x$
(b) $\quad f(x)=\frac{x}{x^{2}+1}$
(c) $f(x)=x^{2} \sqrt{3-x}$
(d) $\quad f(x)=(x-2)^{3}(x+4)^{5}$
(2) Find the absolute maximum and minimum values of the function and where they occur on the given interval.
(a) $\quad f(x)=x^{3}-6 x \quad[-1,1]$
(b) $\quad f(x)=\frac{x}{x^{2}+1} \quad[-2,2]$
(3) Determine where the function is increasing, decreasing, concave up, concave down, and find the location (e.g. x-value) of all extrema and points of inflection.
(a) $y=x^{2}\left(2 x^{2}-9\right)$
(b) $\quad f(x)=\frac{x}{x^{2}+1}$
(4) Use logarithmic differentiation to find $\frac{d y}{d x}$.
(a) $y=(\ln x)^{\sin x}$
(b) $y=\frac{x \sin x}{\sqrt{x^{2}+3}}$
(c) $y=\sqrt{\frac{x+1}{x-1}}$
(5) Determine all antiderivatives of the function.
(a) $\quad f(x)=x(x-1)$
(b) $\quad h(x)=\cos x+\csc ^{2} x$
(c) $y=4 \sin x-3 \sec x \tan x$
(d) $f(x)=\frac{3 x^{3}+2 x^{2}+4}{x}$
(e) $\quad h(x)=\frac{4}{\sqrt{1-x^{2}}}$
(6) Evaluate each limit if it exists using any appropriate techniques.
(a) $\lim _{x \rightarrow 0} \frac{\tan (2 x)}{\ln (1+x)}$
(b) $\lim _{x \rightarrow 1} \frac{\ln (x)}{e^{x-1}}$
(c) $\lim _{x \rightarrow 0} \frac{\ln (1-x)}{e^{x}-1}$
(d) $\lim _{t \rightarrow 0} \frac{4^{t}-6^{t}}{t}$
(e) $\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{2 x}}$
(f) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)$
(g) $\lim _{x \rightarrow \infty} x^{1 / \ln x}$
(7) Evaluate each integral by interpreting it in terms of areas.
(a) $\int_{0}^{4}-\sqrt{16-x^{2}} d x$
(b) $\quad \int_{0}^{5}(|x-1|-1) d x$
(c) $\int_{0}^{2} f(x) d x$ where $f(x)= \begin{cases}1, & x \leq 1 \\ x, & x>1\end{cases}$

