Solutions to Review for Exam 3

MATH 1190 sec. 51
Sections Covered: 3.3 (Log. Diff), 4.5, 4.2, 4.3, 4.4, 4.8, 5.1, 5.2

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Find all critical numbers of the function.
(a) $\quad f(x)=x^{3}-6 x \quad \pm \sqrt{2}$
(b) $\quad f(x)=\frac{x}{x^{2}+1} \quad \pm 1$
(c) $\quad f(x)=x^{2} \sqrt{3-x} \quad 0,3,12 / 5$
(d) $f(x)=(x-2)^{3}(x+4)^{5} \quad 2,-4,-1 / 4$
(2) Find the absolute maximum and minimum values of the function and where they occur on the given interval.
(a) $\quad f(x)=x^{3}-6 x \quad[-1,1]$

The absolute minimum is -5 taken 1 . The absolute maximum is 5 taken at -1 .
(b) $\quad f(x)=\frac{x}{x^{2}+1} \quad[-2,2]$

The absolute minimum is $-1 / 2$ taken at -1 . The absolute maximum is $1 / 2$ taken at 1 .
(3) Determine where the function is increasing, decreasing, concave up, concave down, and find the location (e.g. x-value) of all extrema and points of inflection.
(a) $y=x^{2}\left(2 x^{2}-9\right)$
y is increasing on $(-3 / 2,0) \cup(3 / 2, \infty)$, decreasing on $(-\infty,-3 / 2) \cup(0,3 / 2)$, concave up on $(-\infty,-\sqrt{3} / 2) \cup(\sqrt{3} / 2, \infty)$ and concave down on $(-\sqrt{3} / 2, \sqrt{3} / 2)$. It has local minima at $x= \pm 3 / 2$, and a local maximum at $x=0$. There are two points of inflection at $x= \pm \sqrt{3} / 2$.
(b) $\quad f(x)=\frac{x}{x^{2}+1}$
f is increasing on $(-1,1)$ and decreasing on $(-\infty,-1) \cup(1, \infty) . f$ is concave up on $(-\sqrt{3}, 0) \cup$ $(\sqrt{3}, \infty)$ and concave down on $(-\infty,-\sqrt{3}) \cup(0, \sqrt{3}) . f$ has a local minimum at -1 , a local maximum at 1 , and points of inflection occuring at $-\sqrt{3}, 0$, and $\sqrt{3}$.
(4) Use logarithmic differentiation to find $\frac{d y}{d x}$.
(a) $y=(\ln x)^{\sin x} \quad y^{\prime}=(\ln x)^{\sin x}\left(\cos x \ln (\ln x)+\frac{\sin x}{x \ln x}\right)$
(b) $y=\frac{x \sin x}{\sqrt{x^{2}+3}} \quad \frac{d y}{d x}=\frac{x \sin x}{\sqrt{x^{2}+3}}\left(\frac{1}{x}+\cot x-\frac{x}{x^{2}+3}\right)$
(c) $y=\sqrt{\frac{x+1}{x-1}} \quad y^{\prime}=\sqrt{\frac{x+1}{x-1}}\left(\frac{1}{2(x+1)}-\frac{1}{2(x-1)}\right)$
(5) Determine all antiderivatives of the function.
(a) $\quad f(x)=x(x-1), \quad F(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}+C$
(b) $\quad h(x)=\cos x+\csc ^{2} x, \quad H(x)=\sin x-\cot x+C$
(c) $y=4 \sin x-3 \sec x \tan x, \quad Y=-4 \cos x-3 \sec x+C$
(d) $\quad f(x)=\frac{3 x^{3}+2 x^{2}+4}{x}, \quad F(x)=x^{3}+x^{2}+4 \ln |x|+C$
(e) $\quad h(x)=\frac{4}{\sqrt{1-x^{2}}}, \quad H(x)=4 \sin ^{-1}(x)+C$
(6) Evaluate each limit if it exists using any appropriate techniques.
(a) $\lim _{x \rightarrow 0} \frac{\tan (2 x)}{\ln (1+x)}=2$
(b) $\lim _{x \rightarrow 1} \frac{\ln (x)}{e^{x-1}}=0$
(c) $\lim _{x \rightarrow 0} \frac{\ln (1-x)}{e^{x}-1}=-1$
(d) $\lim _{t \rightarrow 0} \frac{4^{t}-6^{t}}{t}=\ln 4-\ln 6$
(e) $\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{2 x}}=0$
(f) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right)=1 / 2$
(g) $\lim _{x \rightarrow \infty} x^{1 / \ln x}=e$
(7) Evaluate each integral by interpreting it in terms of areas.
(a) $\int_{0}^{4}-\sqrt{16-x^{2}} d x=-4 \pi$
(b) $\quad \int_{0}^{5}(|x-1|-1) d x=\frac{7}{2}$
(c) $\int_{0}^{2} f(x) d x=\frac{5}{2} \quad$ where $f(x)= \begin{cases}1, & x \leq 1 \\ x, & x>1\end{cases}$

