Review for Exam II1
Calculus II sec. 001 Summer 2015

Sections Covered:7.3, 7.4, 7.5, 7.8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6
This practice exam is intended to give you a rough idea of the types of problems you can expect to

encounter. Nothing else is intended or implied.

(1) Evaluate the given integrals using any applicable method.
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(2) Find the form of the partial fraction decomposition. (It is not necessary to find any of the coeffi-
cients A, B, etc.)

2x
@ 2+ Tx + 12

22+ 2 —1
®) (22 = 2z 4+ 1)(2% — 4)
(©) !

o+ 27 (@~ 12(a? + 4

(3) Write the following as the sum of a polynomial and a proper rational function. Find a partial
fraction decomposition for the resulting proper rational function.
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(4) Evaluate the given integral or determine that it is divergent.
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(5) Determine if the sequence converges or diverges. If it converges, find its limit.
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(6) Find the sum of the convergent telescoping series.
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(7) Determine if the geometric series is convergent or divergent. If convergent, find its sum.
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(8) Determine if the given series converges or diverges. If the series converges, determine if it con-
verges absolutely or conditionally. Make clear what tests if any you are using and what your conclu-

sion is in each case.
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(9) These are some conceptual questions.
(a) If lim,,_,o a, = 0, then the sequence {a,} is convergent. (T/F)
(b) If lim, ., a, = 0, then the series ) a,, must be convergent. (T/F)
(c) If {a,} is a sequence of real numbers, then it has a derivative {a/, }. (T/F)
(d) If lim,, ., a, = 2, then the series > a,, must be divergent. (T/F)

(e) If the series of positive terms Y a,, is convergent, it must be absolutely convergent. (T/F)

(f) The integral test may be used to determine if ;L—,'l is convergent or divergent. (T/F)
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(g) The terms sequence and series are interchangeable. (T/F)

(h) If the sequence {a, } converges, then the series ) _ a,, converges. (T/F)



