Review for Exam III

MATH 2306 sections 51 & 54

Sections Covered: 4.6, 4.9, 5.1, 7.1, 7.2

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.

- (1) A 1 kg mass is attached to a spring whose spring constant is 13 N/m. The surrounding medium offers a resistance that is numerically equal to 6 times the instantaneous velocity. The mass is released from rest 2 m above the equilibrium position. Determine the equation of motion.
- (2) An LRC series circuit exhibits free electrical vibrations. If the inductance L=1h and the capacitance C=0.04f, determine the resistance R (R>0) such that the electrical vibrations are (a) overdamped, (b) underdamped, and (c) critically damped.
- (3) Find the Laplace transform using the definition and specify its domain.

$$f(t) = te^{2t}.$$

(4) Find the Laplace transform using any method.

(a)
$$f(t) = (t-1)^2 - e^{-3t}$$

(b)
$$f(t) = t + \sin \pi t$$

(c)
$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ 1, & 1 \le t \end{cases}$$

(5) Find the inverse Laplace transform using any method.

(a)
$$F(s) = \frac{1}{s^2 - 25}$$

(b)
$$F(s) = \frac{2s+5}{s^3+3s}$$

(c)
$$F(s) = \frac{4}{s(s+1)}$$

(6) Solve the IVP using the Laplace transform.

(a)
$$y'' + 4y = 1$$
 $y(0) = 0$, $y'(0) = -1$

(b)
$$y''-y = 2\cos(5t)$$
 $y(0) = 0$, $y'(0) = 0$

(7) Find $\mathcal{L}\{f(t)\}$ given that

$$\mathscr{L}{f'(t)} = \ln\left(\frac{s^2+4}{s^2}\right)$$
 and $f(0) = 1$

Don't waste any time or energy trying to find f. You don't need to.

(8) Find the general solution of the ODE.

$$y'' + y = \csc x$$

(9) Find the general solution of the ODE for which one solution to the associated homogeneous equation, y_1 , is given.

$$x^2y'' + 3xy' - 3y = 15x^2$$
, $y_1(x) = x^{-3}$

(10) A 160 pound weight is attached to an industrial spring causing it to stretch from 9 feet to 10.28 feet. The weight is then driven from rest at equilibrium by an external for F(t) =

 $F_0\cos(\gamma t)$. At what frequency γ will the external force induce pure resonance? (Take g=32 feet per second squared.)

(11) Solve the IVP.

$$\frac{dx}{dt} = y \qquad x(0) = 1$$

$$\frac{dy}{dt} = x \qquad y(0) = 0$$

Note that the hyperbolic sine and cosine provide a nice, compact formulation of the solution.