# Solutions to Review for Exam III 

MATH 2306 (Ritter)
Sections Covered: 8, 9

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Find the general solution of the homogeneous equation.
(a) $y^{\prime \prime}-2 y^{\prime}+5 y=0 \quad y=c_{1} e^{x} \cos (2 x)+c_{2} e^{x} \sin (2 x)$
(b) $y^{\prime \prime}+6 y^{\prime}+9 y=0 \quad y=c_{2} e^{-3 x}+c_{2} x e^{-3 x}$
(c) $y^{\prime \prime}-36 y=0 \quad y=c_{1} e^{6 x}+c_{2} e^{-6 x}$
(d) $y^{(4)}+3 y^{\prime \prime}-4 y=0 \quad y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+c_{3} e^{x}+c_{4} e^{-x}$
(e) $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0 \quad y=c_{1}+c_{2} e^{-x}+c_{3} x e^{-x}$
(f) $2 y^{\prime \prime}-3 y^{\prime}-2 y=0 \quad y=c_{1} e^{-x / 2}+c_{2} e^{2 x}$
(2) Solve each IVP
(a) $\quad y^{\prime \prime}-3 y^{\prime}+2 y=0 \quad y(0)=0, \quad y^{\prime}(0)=2 \quad y=2 e^{2 x}-2 e^{x}$
(b) $y^{\prime \prime}+2 y^{\prime}=0 \quad y(1)=0, \quad y^{\prime}(1)=1 \quad y=\frac{1}{2}-\frac{e^{2}}{2} e^{-2 x}$
(c) $y^{\prime \prime}-2 y^{\prime}+5 y=0 \quad y(0)=0, \quad y^{\prime}(0)=2 \quad y=e^{x} \sin (2 x)$
(4) Find the general solution of each nonhomogeneous equation
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=e^{x}+3 e^{-3 x} \quad y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}+\frac{1}{16} e^{x}+\frac{3}{2} x^{2} e^{-3 x}$
(b) $y^{\prime \prime}+y^{\prime}-12 y=2 x \quad y=c_{1} e^{-4 x}+c_{2} e^{3 x}-\frac{1}{6} x-\frac{1}{72}$
(c) $y^{\prime \prime}+y=4 \cos x \quad y=c_{1} \cos x+c_{2} \sin x+2 x \sin x$
(5) Determine the form of the particular solution. (Do not bother trying to find any of the coefficients $A, B$, etc.)
(a) $y^{\prime \prime}-4 y^{\prime}+5 y=x \cos 2 x \quad y_{p}=(A x+B) \cos (2 x)+(C x+D) \sin (2 x)$
(b) $y^{\prime \prime}+y=x^{3}+e^{x} \quad y_{p}=A x^{3}+B x^{2}+C x+D+E e^{x}$
(c) $y^{\prime \prime}-4 y^{\prime}+5 y=x e^{2 x} \sin x \quad y_{p}=\left(A x^{2}+B x\right) e^{2 x} \sin x+\left(C x^{2}+D x\right) e^{2 x} \cos x$
(d) $y^{\prime \prime}-2 y^{\prime}+y=1+e^{x} \quad y_{p}=A+B x^{2} e^{x}$
(6) For each homogeneous equation, write out the characteristic equation. If the equation doesn't have a characteristic equation, briefly state why.
(a) $3 \frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}+\frac{d y}{d x}-4 y=0 \quad 3 m^{4}-2 m^{3}+m-4=0$
(b) $4 y^{\prime \prime}+2 x y^{\prime}+e^{x} y=0$ none exists, it's not constant coefficient
(c) $x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-4 x y^{\prime}+y=0 \quad$ none exists, it's not constant coefficient
(d) $y^{(6)}+16 y^{(4)}-12 y^{\prime \prime}+y=0 \quad m^{6}+16 m^{4}-12 m^{2}+1=0$
(7) For each of the following nonhomogeneous equations, determine whether the method of undetermined coefficients could be used to determine $y_{p}$. If not, give a brief explanation.
(a) $3 \frac{d^{4} y}{d x^{4}}-2 \frac{d^{3} y}{d x^{3}}+\frac{d y}{d x}-4 y=x^{3} e^{x} \quad$ yes, it could
(b) $4 y^{\prime \prime}+2 y^{\prime}+y=\frac{1}{1+x^{2}} \quad$ nope, RHS is not of the correct type
(c) $x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-4 x y^{\prime}+y=\sin (2 x)+x \quad$ nope, LHS is not constant coefficient
(d) $y^{(6)}+16 y^{(4)}-12 y^{\prime \prime}+y=x \ln x \quad$ nope, RHS is not of the correct type

