Solutions to Review for Exam 3

MATH 2306 (Ritter)
Sections Covered: 9, 10, 11, 12, 13, 14

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Find the general solution of each nonhomogeneous equation
(a) $y^{\prime \prime}+6 y^{\prime}+9 y=e^{x}+3 e^{-3 x} \quad y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}+\frac{1}{16} e^{x}+\frac{3}{2} x^{2} e^{-3 x}$
(b) $y^{\prime \prime}+y^{\prime}-12 y=2 x \quad y=c_{1} e^{-4 x}+c_{2} e^{3 x}-\frac{1}{6} x-\frac{1}{72}$
(c) $y^{\prime \prime}+y=4 \cos x \quad y=c_{1} \cos x+c_{2} \sin x+2 x \sin x$
(2) Determine the form of the particular solution. (Do not bother trying to find any of the coefficients A, B, etc.)
(a) $y^{\prime \prime}-4 y^{\prime}+5 y=x \cos 2 x \quad y_{p}=(A x+B) \cos (2 x)+(C x+D) \sin (2 x)$
(b) $y^{\prime \prime}+y=x^{3}+e^{x} \quad y_{p}=A x^{3}+B x^{2}+C x+D+E e^{x}$
(c) $y^{\prime \prime}-4 y^{\prime}+5 y=x e^{2 x} \sin x \quad y_{p}=\left(A x^{2}+B x\right) e^{2 x} \sin x+\left(C x^{2}+D x\right) e^{2 x} \cos x$
(d) $y^{\prime \prime}-2 y^{\prime}+y=1+e^{x} \quad y_{p}=A+B x^{2} e^{x}$
(3) A 64 lb object is attached to a spring whose spring constant is $26 \mathrm{lb} / \mathrm{ft}$. A dashpot provides damping that is numerically equal to 8 times the instantaneous velocity.
(a) Determine the mass m of the object in slugs. $m=2$ slugs
(b) Assuming there is no external applied force, set up the differential equation for the displacement and determine if the motion is overdamped, underdamped or critically damped.
$2 x^{\prime \prime}+8 x^{\prime}+26 x=0$, i.e. $x^{\prime \prime}+4 x^{\prime}+13 x=0$. The system is underdamped with characteristic roots $r=-2 \pm 3 i$.
(c) If the object is initially displaced 6 inches above equilibrium and given an initial upward velocity of $2 \mathrm{ft} / \mathrm{sec}$, determine the displacement for $t>0 . \quad x(t)=\frac{1}{2} e^{-2 t} \cos (3 t)+$ $e^{-2 t} \sin (3 t)$
(4)A 200 volt battery is applied to a series circuit with inductance 2 henries, resistance 26 ohms and capacitance $\frac{1}{80}$ farads. Find the charge on the capacitor $q(t)$ for $t>0$ assuming the initial charge and current are zero, $q(0)=0, i(0)=0 . q(t)=\frac{25}{6} e^{-8 t}-\frac{20}{3} e^{-5 t}+\frac{5}{2}$
(5) A 2 slug object is attached to a spring whose spring constant is $162 \mathrm{lb} / \mathrm{ft}$. The system is undamped, and an external driving force of $f(t)=-4 \cos (\gamma t)$ is applied. Assume that the driving force induces pure resonance. If the object starts from rest at equilibrium, determine the displacement for $t>0$. If the spring has a maximum stretched length of 4 ft , after how many seconds will the amplitude of the oscillations exceed the maximum spring length? Resonance frequency is $\omega=\sqrt{162 / 2}=9$ per second. The IVP is $x^{\prime \prime}+81 x=-2 \cos (9 t)$ with $x(0)=x^{\prime}(0)=0$. The displacement is $x(t)=-\frac{1}{9} t \sin (9 t)$. The amplitude $|t / 9|$ will exceed 4 ft when $t>36$ seconds. So after 36 .
(6) Consider the nonhomogeneous equation $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=20 x^{3}$.
(a) One solution of the associated homogeneous equation is $y_{1}=x^{2}$. Find a second linearly independent one $y_{2} . y_{2}=\frac{1}{x^{2}}$
(b) Find a particular solution y_{p} of the nonhomogeneous equation. $y_{p}=4 x^{3}$
(c) Solve the IVP: $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=20 x^{3}, y(1)=3, y^{\prime}(1)=6 . y=-2 x^{2}+\frac{1}{x^{2}}+4 x^{3}$
(7) Use the method of variation of parameters to find a particular solution for each nonhomogeneous equation.
(a) $y^{\prime \prime}+y=\sec \theta \tan \theta \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2} \quad y_{p}=\theta \cos \theta+\sin \theta \ln (\sec \theta)$
$y_{p}=(\theta-\tan \theta) \cos \theta+\sin \theta \ln (\sec \theta)$ is also correct.
(b) $y^{\prime \prime}+3 y^{\prime}+2 y=\sin \left(e^{x}\right) \quad y_{p}=-e^{-2 x} \sin \left(e^{x}\right)$
(8) Use the definition (i.e. compute an integral) to show that $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ for $s>a$. Use the fact that $e^{-s t} e^{a t}=e^{-(s-a) t}$. The convergence of the integral will require $s-a>0$.
(9) Compute the transform or inverse transform as indicated. (Use the table of Laplace transforms along with any necessary algebra or identities.)
(a) $\mathscr{L}\left\{(2 t-3)^{2}\right\}=\mathscr{L}\left\{4 t^{2}-12 t+9\right\}=\frac{8}{s^{3}}-\frac{12}{s^{2}}+\frac{9}{s}$
(b) $\mathscr{L}\left\{\cos ^{2} t-\sin ^{2} t\right\}=\mathscr{L}\{\cos (2 t)\}=\frac{s}{s^{2}+4}$
(c) $\mathscr{L}\left\{e^{3 t}+7 \sin (2 t)-t^{5}\right\}=\frac{1}{s-3}+\frac{14}{s^{2}+4}-\frac{120}{s^{6}}$
(d) $\mathscr{L}^{-1}\left\{\frac{1}{s^{4}}-\frac{s}{s^{2}+5}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{6} \frac{3!}{s^{4}}-\frac{s}{s^{2}+(\sqrt{5})^{2}}\right\}=\frac{1}{6} t^{3}-\cos (\sqrt{5} t)$
(e) $\mathscr{L}^{-1}\left\{\frac{5 s+3}{s^{2}+s}\right\}=\mathscr{L}^{-1}\left\{\frac{3}{s}-\frac{2}{s+1}\right\}=3+2 e^{-t}$

