Solutions to Review for Exam III

MATH 2306 sections 51 \& 54

Sections Covered: 4.6, 4.9, 5.1, 7.1, 7.2

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) A 1 kg mass is attached to a spring whose spring constant is $13 \mathrm{~N} / \mathrm{m}$. The surrounding medium offers a resistance that is numerically equal to 6 times the instantaneous velocity. The mass is released from rest 2 m above the equilibrium position. Determine the equation of motion. The position $x(t)=-e^{-3 t}(2 \cos 2 t+3 \sin 2 t)$.
(2) An LRC series circuit exhibits free electrical vibrations. If the inductance $L=1 h$ and the capacitance $C=0.04 f$, determine the resistance $R(R>0)$ such that the electrical vibrations are (a) overdamped ($R>10$), (b) underdamped $(0 \leq R<10)$, and (c) critically damped ($R=10$).
(3) Find the Laplace transform using the definition and specify its domain.

$$
f(t)=t e^{2 t} \quad \mathscr{L}\{f(t)\}=\frac{1}{(s-2)^{2}}, \quad s>2
$$

(4) Find the Laplace transform using any method.
(a) $f(t)=(t-1)^{2}-e^{-3 t} \quad \mathscr{L}\{f(t)\}=\frac{2}{s^{3}}-\frac{2}{s^{2}}+\frac{1}{s}+\frac{1}{s+3}, \quad s>0$
(b) $f(t)=t+\sin \pi t \quad \mathscr{L}\{f(t)\}=\frac{1}{s^{2}}+\frac{\pi}{s^{2}+\pi^{2}}, \quad s>0$
(c) $f(t)=\left\{\begin{array}{cc}t, & 0 \leq t<1 \\ 1, & 1 \leq t\end{array} \quad \mathscr{L}\{f(t)\}=\frac{1}{s^{2}}-\frac{e^{-s}}{s^{2}}, \quad s>0\right.$
(5) Find the inverse Laplace transform using any method.
(a) $\quad F(s)=\frac{1}{s^{2}-25} \quad \mathscr{L}^{-1}\{F(s)\}=\frac{1}{10} e^{5 t}-\frac{1}{10} e^{-5 t}=\frac{1}{5} \sinh (5 t)$
(b) $\quad F(s)=\frac{2 s+5}{s^{3}+3 s} \quad \mathscr{L}^{-1}\{F(s)\}=\frac{5}{3}+\frac{2}{\sqrt{3}} \sin (\sqrt{3} t)-\frac{5}{3} \cos (\sqrt{3} t)$
(c) $\quad F(s)=\frac{4}{s(s+1)} \quad \mathscr{L}^{-1}\{F(s)\}=4-4 e^{-t}$
(6) Solve the IVP using the Laplace transform.
(a) $\quad y^{\prime \prime}+4 y=1 \quad y(0)=0, \quad y^{\prime}(0)=-1 \quad y=\frac{1}{4}-\frac{1}{4} \cos (2 t)-\frac{1}{2} \sin (2 t)$
(b) $\quad y^{\prime \prime}-y=2 \cos (5 t) \quad y(0)=0, \quad y^{\prime}(0)=0 \quad y=\frac{1}{26} e^{t}+\frac{1}{26} e^{-t}-\frac{1}{13} \cos (5 t)$
(7) Find $\mathscr{L}\{f(t)\}$ given that

$$
\begin{gathered}
\mathscr{L}\left\{f^{\prime}(t)\right\}=\ln \left(\frac{s^{2}+4}{s^{2}}\right) \quad \text { and } \quad f(0)=1 \\
\mathscr{L}\{f(t)\}=\frac{1}{s} \ln \left(\frac{s^{2}+4}{s^{2}}\right)+\frac{1}{s}
\end{gathered}
$$

(8) Find the general solution of the ODE.
$y^{\prime \prime}+y=\csc x \quad y=c_{1} \cos x+c_{2} \sin x-x \cos x+\sin x \ln |\sin x|$
(9) Find the general solution of the ODE for which one solution to the associated homogeneous equation, y_{1}, is given.

$$
\begin{gathered}
x^{2} y^{\prime \prime}+3 x y^{\prime}-3 y=15 x^{2}, \quad y_{1}(x)=x^{-3} \\
y=c_{1} x^{-3}+c_{2} x+3 x^{2}
\end{gathered}
$$

(10) A 160 pound weight is attached to an industrial spring causing it to stretch from 9 feet to 10.28 feet. The weight is then driven from rest at equilibrium by an external for $F(t)=$ $F_{0} \cos (\gamma t)$. At what frequency γ will the external force induce pure resonance? (Take $g=32$ feet per second squared.)

$$
k=\frac{160}{1.28}, \quad m=\frac{160}{32} \quad \Longrightarrow \quad \gamma_{\text {res }}=\sqrt{\frac{k}{m}}=5
$$

(11) Solve the IVP.

$$
\begin{array}{ll}
\frac{d x}{d t}=y & x(0)=1 \\
\frac{d y}{d t}=x & y(0)=0
\end{array}
$$

Note that the hyperbolic sine and cosine provide a nice, compact formulation of the solution.

$$
x(t)=\frac{1}{2} e^{t}+\frac{1}{2} e^{-t}=\cosh t, \quad y(t)=\frac{1}{2} e^{t}-\frac{1}{2} e^{-t}=\sinh t
$$

