Practice for Exam 3 MATH 3260 Fall 2017

Sections Covered: 6.1, 6.2, 6.3, 6.4, 6.7, 5.1, 5.2
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Suppose A is a square matrix and 2 is an eigenvalue of A. Explain why the matrix $A-2 I$ is a singular matrix.
(2) Determine the eigenvalues of the matrix $\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2\end{array}\right]$.
(3) For each eigenvalue of the matrix in the previous problem find a basis for the corresponing eigenspace.
(4) Determine all real or complex eigenvalues of the matrix $\left[\begin{array}{rr}7 & -5 \\ 1 & 3\end{array}\right]$.
(5) Find a unit vector in the direction of $\mathbf{v}=(1,2,1,-3)$.
(6) Write the vector $\mathbf{u}=(0,-2,3,2)$ in the form $\mathbf{u}=\hat{\mathbf{u}}+\mathbf{z}$ where $\hat{\mathbf{u}}$ is parallel to \mathbf{v} and \mathbf{z} is orthogonal to v for the vector v in problem (5). Use this to find the distance between the point $(0,-2,3,2)$ and the line $\operatorname{Span}\{\mathbf{v}\}$ in \mathbb{R}^{4}.
(7) Find a basis for the orthogonal complement $[\operatorname{Row}(A)]^{\perp}$ of the row space of the given matrix.

$$
A=\left[\begin{array}{rrrrr}
5 & 1 & 2 & 2 & 0 \\
3 & 3 & 2 & -1 & -12 \\
8 & 4 & 4 & -5 & 12 \\
2 & 1 & 1 & 0 & -2
\end{array}\right]
$$

(8) Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
2 \\
0 \\
1
\end{array}\right]
$$

(9) Define and inner product on \mathbb{R}^{2} by $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{v}^{T} A \mathbf{u}$ where $A=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$. Relative to this inner product
(a) Find the norm of $(1,1)$.
(b) Find a unit vector in the direction of $(1,1)$.
(c) Characterize the set of all vectors that are orthogonal to $(1,2)$.
(d) Find the distance between $(1,1)$ and $(1,2)$.
(10) Find the least squares best fit line to the data

x	0	1	2	3	4	5
y	-1	1	1	3	4	6

(11) For the product $\langle\mathbf{p}, \mathbf{q}\rangle=\mathbf{p}(-1) \mathbf{q}(-1)+\mathbf{p}(0) \mathbf{q}(0)+\mathbf{p}(1) \mathbf{q}(1)$ on \mathbb{P}_{2}, show that for each \mathbf{p}

$$
\langle\mathbf{p}, \mathbf{p}\rangle \geq 0, \quad \text { and } \quad\langle\mathbf{p}, \mathbf{p}\rangle=0
$$

if and only if $\mathbf{p}=\mathbf{0}$.

