Practice for Exam 3 MATH 3260 Fall 2017

Sections Covered: 6.1, 6.2, 6.3, 6.4, 6.7, 5.1, 5.2

This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. **Nothing else is intended or implied.**

(1) Suppose A is a square matrix and 2 is an eigenvalue of A. Explain why the matrix A - 2I is a singular matrix.

	1	2	0	
(2) Determine the eigenvalues of the matrix	0	-1	1	
	0	0	2	

(3) For each eigenvalue of the matrix in the previous problem find a basis for the corresponding eigenspace.

(4) Determine all real or complex eigenvalues of the matrix $\begin{bmatrix} 7 & -5 \\ 1 & 3 \end{bmatrix}$.

(5) Find a unit vector in the direction of $\mathbf{v} = (1, 2, 1, -3)$.

(6) Write the vector $\mathbf{u} = (0, -2, 3, 2)$ in the form $\mathbf{u} = \hat{\mathbf{u}} + \mathbf{z}$ where $\hat{\mathbf{u}}$ is parallel to \mathbf{v} and \mathbf{z} is orthogonal to \mathbf{v} for the vector \mathbf{v} in problem (5). Use this to find the distance between the point (0, -2, 3, 2) and the line Span{ \mathbf{v} } in \mathbb{R}^4 .

(7) Find a basis for the orthogonal complement $[\operatorname{Row}(A)]^{\perp}$ of the row space of the given matrix.

$$A = \begin{bmatrix} 5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2 \end{bmatrix}$$

(8) Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\ 0\\ 1\\ 2\\ 2 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 2\\ 2\\ 0\\ 1\\ 1 \end{bmatrix}$$

(9) Define and inner product on \mathbb{R}^2 by $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^T A \mathbf{u}$ where $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$. Relative to this inner product

- (a) Find the norm of (1, 1).
- (b) Find a unit vector in the direction of (1, 1).
- (c) Characterize the set of all vectors that are orthogonal to (1, 2).
- (d) Find the distance between (1, 1) and (1, 2).
- (10) Find the least squares best fit line to the data $\begin{bmatrix} x & 0 & 1 & 2 & 3 & 4 & 5 \\ y & -1 & 1 & 1 & 3 & 4 & 6 \end{bmatrix}$

(11) For the product $\langle \mathbf{p}, \mathbf{q} \rangle = \mathbf{p}(-1)\mathbf{q}(-1) + \mathbf{p}(0)\mathbf{q}(0) + \mathbf{p}(1)\mathbf{q}(1)$ on \mathbb{P}_2 , show that for each \mathbf{p}

$$\langle \mathbf{p}, \mathbf{p} \rangle \ge 0$$
, and $\langle \mathbf{p}, \mathbf{p} \rangle = 0$

if and only if $\mathbf{p} = \mathbf{0}$.