Solutions to Practice for Exam 3 MATH 3260 Fall 2017

Sections Covered: 6.1, 6.2, 6.3, 6.4, 6.7, 5.1, 5.2

This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. **Nothing else is intended or implied.**

(1) Suppose A is a square matrix and 2 is an eigenvalue of A. Explain why the matrix A - 2I is a singular matrix. $(A - 2I)\mathbf{x} = \mathbf{0}$ has a nontrivial solution \mathbf{x} . By the invertible matrix theorem, it follows that A - 2I is singular.

(2) Determine the eigenvalues of the matrix
$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{bmatrix} . \lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 2$$

(3) For each eigenvalue of the matrix in the previous problem find a basis for the corresponding eigenspace. For λ_1 , {(1,0,0)}, for λ_2 , {(1,-1,0)}, for λ_3 , {(2,1,3)}.

(4) Determine all real or complex eigenvalues of the matrix $\begin{bmatrix} 7 & -5 \\ 1 & 3 \end{bmatrix}$. $\lambda = 5 \pm i$

(5) Find a unit vector in the direction of $\mathbf{v} = (1, 2, 1, -3)$. $\left(\frac{1}{\sqrt{15}}, \frac{2}{\sqrt{15}}, \frac{1}{\sqrt{15}}, -\frac{3}{\sqrt{15}}\right)$

(6) Write the vector $\mathbf{u} = (0, -2, 3, 2)$ in the form $\mathbf{u} = \hat{\mathbf{u}} + \mathbf{z}$ where $\hat{\mathbf{u}}$ is parallel to \mathbf{v} and \mathbf{z} is orthogonal to \mathbf{v} for the vector \mathbf{v} in problem (5). Use this to find the distance between the point (0, -2, 3, 2) and the line Span $\{\mathbf{v}\}$ in \mathbb{R}^4 . $\mathbf{u} = \left(-\frac{7}{15}, -\frac{14}{15}, -\frac{7}{15}, \frac{21}{15}\right) + \left(\frac{7}{15}, -\frac{16}{15}, \frac{52}{15}, \frac{9}{15}\right)$. This is $\hat{\mathbf{u}} + \mathbf{z}$ written from left to right. The distance is $\|\mathbf{z}\| = \sqrt{3090}/15$.

(7) Find a basis for the orthogonal complement $[\operatorname{Row}(A)]^{\perp}$ of the row space of the given matrix.

Use $[\operatorname{Row}(A)]^{\perp} = \operatorname{Nul}(A)$.

$$A = \begin{bmatrix} 5 & 1 & 2 & 2 & 0 \\ 3 & 3 & 2 & -1 & -12 \\ 8 & 4 & 4 & -5 & 12 \\ 2 & 1 & 1 & 0 & -2 \end{bmatrix} \quad \begin{cases} -\frac{1}{3} \\ -\frac{1}{3} \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{10}{3} \\ \frac{26}{3} \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{cases}$$

(8) Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\ 0\\ 1\\ 2 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 1\\ -1\\ 1\\ 1\\ 1 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 2\\ 2\\ 0\\ 1\\ 1 \end{bmatrix}, \quad \begin{cases} \frac{1}{\sqrt{6}}\\ 0\\ 1 \end{bmatrix}, \quad \begin{cases} \frac{1}{\sqrt{12}}\\ -\frac{3}{\sqrt{12}}\\ \frac{1}{\sqrt{12}}\\ -\frac{3}{\sqrt{12}}\\ \frac{1}{\sqrt{12}}\\ -\frac{1}{\sqrt{68}}\\ -\frac{1}{\sqrt{68}}\\ -\frac{1}{\sqrt{68}}\\ -\frac{3}{\sqrt{68}} \end{cases} \right\}$$

(9) Define and inner product on \mathbb{R}^2 by $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^T A \mathbf{u}$ where $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$. Relative to this inner product

- (a) Find the norm of (1, 1). ||(1, 1)|| = 4
- (b) Find a unit vector in the direction of (1, 1). $(\frac{1}{4}, \frac{1}{4})$
- (c) Characterize the set of all vectors that are orthogonal to $(1,2).(x_1,x_2)$ such that $11x_1 + 13x_2 = 0$
- (d) Find the distance between (1, 1) and (1, 2). $||(1, 1) (1, 2)|| = \sqrt{5}$

(10) Find the least squares best fit line to the data	x	0	1	2	3	4	5	46	20
	у	-1	1	1	3	4	6	$y = \frac{1}{35}x$	21

(11) For the product $\langle \mathbf{p}, \mathbf{q} \rangle = \mathbf{p}(-1)\mathbf{q}(-1) + \mathbf{p}(0)\mathbf{q}(0) + \mathbf{p}(1)\mathbf{q}(1)$ on \mathbb{P}_2 , show that for each \mathbf{p}

$$\langle \mathbf{p}, \mathbf{p} \rangle \ge 0$$
, and $\langle \mathbf{p}, \mathbf{p} \rangle = 0$

if and only if $\mathbf{p} = \mathbf{0}$. If you set $\mathbf{p} = p_0 + p_1 t + p_2 t^2$, the conditions $\mathbf{p}(-1) = \mathbf{p}(0) = \mathbf{p}(1) = 0$ result in the equation $p_0 - p_1 + p_2 = 0$, $p_0 = 0$, and $p_0 + p_1 + p_2 = 0$. You can check that the only solution is $p_0 = p_1 = p_2 = 0$. Note that what is written here isn't an argument. It's just intended to let you know how you can construct an argument.