Solutions to Practice for Exam 3 MATH 3260 Fall 2017

Sections Covered: 6.1, 6.2, 6.3, 6.4, 6.7, 5.1, 5.2
This practice exam is intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) Suppose A is a square matrix and 2 is an eigenvalue of A. Explain why the matrix $A-2 I$ is a singular matrix. $(A-2 I) \mathbf{x}=\mathbf{0}$ has a nontrivial solution x . By the invertible matrix theorem, it follows that $A-2 I$ is singular.
(2) Determine the eigenvalues of the matrix $\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2\end{array}\right] \cdot \lambda_{1}=1, \lambda_{2}=-1, \lambda_{3}=2$
(3) For each eigenvalue of the matrix in the previous problem find a basis for the corresponding eigenspace. For $\lambda_{1},\{(1,0,0)\}$, for $\lambda_{2},\{(1,-1,0)\}$, for $\lambda_{3},\{(2,1,3)\}$.
(4) Determine all real or complex eigenvalues of the matrix $\left[\begin{array}{rr}7 & -5 \\ 1 & 3\end{array}\right] \cdot \lambda=5 \pm i$
(5) Find a unit vector in the direction of $\mathbf{v}=(1,2,1,-3) .\left(\frac{1}{\sqrt{15}}, \frac{2}{\sqrt{15}}, \frac{1}{\sqrt{15}},-\frac{3}{\sqrt{15}}\right)$
(6) Write the vector $\mathbf{u}=(0,-2,3,2)$ in the form $\mathbf{u}=\hat{\mathbf{u}}+\mathbf{z}$ where $\hat{\mathbf{u}}$ is parallel to \mathbf{v} and \mathbf{z} is orthogonal to v for the vector v in problem (5). Use this to find the distance between the point $(0,-2,3,2)$ and the line $\operatorname{Span}\{\mathbf{v}\}$ in $\mathbb{R}^{4} . \mathbf{u}=\left(-\frac{7}{15},-\frac{14}{15},-\frac{7}{15}, \frac{21}{15}\right)+\left(\frac{7}{15},-\frac{16}{15}, \frac{52}{15}, \frac{9}{15}\right)$. This is $\hat{\mathbf{u}}+\mathbf{z}$ written from left to right. The distance is $\|\mathbf{z}\|=\sqrt{3090} / 15$.
(7) Find a basis for the orthogonal complement $[\operatorname{Row}(A)]^{\perp}$ of the row space of the given matrix.

Use $[\operatorname{Row}(A)]^{\perp}=\operatorname{Nul}(A)$.

$$
A=\left[\begin{array}{rrrrr}
5 & 1 & 2 & 2 & 0 \\
3 & 3 & 2 & -1 & -12 \\
8 & 4 & 4 & -5 & 12 \\
2 & 1 & 1 & 0 & -2
\end{array}\right] \quad\left\{\left[\begin{array}{r}
-\frac{1}{3} \\
-\frac{1}{3} \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-\frac{10}{3} \\
\frac{26}{3} \\
0 \\
4 \\
1
\end{array}\right]\right\}
$$

(8) Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
2 \\
0 \\
1
\end{array}\right], \quad\left\{\left[\begin{array}{c}
\frac{1}{\sqrt{6}} \\
0 \\
\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{12}} \\
-\frac{3}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
-\frac{1}{\sqrt{12}}
\end{array}\right],\left[\begin{array}{c}
\frac{7}{\sqrt{68}} \\
\frac{3}{\sqrt{68}} \\
-\frac{1}{\sqrt{68}} \\
-\frac{3}{\sqrt{68}}
\end{array}\right]\right\}
$$

(9) Define and inner product on \mathbb{R}^{2} by $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{v}^{T} A \mathbf{u}$ where $A=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$. Relative to this inner product
(a) Find the norm of $(1,1) \cdot\|(1,1)\|=4$
(b) Find a unit vector in the direction of $(1,1) \cdot\left(\frac{1}{4}, \frac{1}{4}\right)$
(c) Characterize the set of all vectors that are orthogonal to $(1,2) \cdot\left(x_{1}, x_{2}\right)$ such that $11 x_{1}+$ $13 x_{2}=0$
(d) Find the distance between $(1,1)$ and $(1,2) .\|(1,1)-(1,2)\|=\sqrt{5}$

(10) Find the least squares best fit line to the data | x | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| y | -1 | 1 | 1 | 3 | 4 | 6 |$\quad y=\frac{46}{35} x-\frac{20}{21}$

(11) For the product $\langle\mathbf{p}, \mathbf{q}\rangle=\mathbf{p}(-1) \mathbf{q}(-1)+\mathbf{p}(0) \mathbf{q}(0)+\mathbf{p}(1) \mathbf{q}(1)$ on \mathbb{P}_{2}, show that for each \mathbf{p}

$$
\langle\mathbf{p}, \mathbf{p}\rangle \geq 0, \quad \text { and } \quad\langle\mathbf{p}, \mathbf{p}\rangle=0
$$

if and only if $\mathbf{p}=\mathbf{0}$. If you set $\mathbf{p}=p_{0}+p_{1} t+p_{2} t^{2}$, the conditions $\mathbf{p}(-1)=\mathbf{p}(0)=\mathbf{p}(1)=0$ result in the equation $p_{0}-p_{1}+p_{2}=0, p_{0}=0$, and $p_{0}+p_{1}+p_{2}=0$. You can check that the only solution is $p_{0}=p_{1}=p_{2}=0$. Note that what is written here isn't an argument. It's just intended to let you know how you can construct an argument.

