Practice for Exam 3 (Ritter) MATH 3260 Spring 2018

Sections Covered: 4.4, 4.5, 4.6, 6.1, 6.2, 6.3, 6.4, 5.1, 5.2
These practice problems are intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.
(1) For each matrix A, find bases for $\operatorname{Nul} A, \operatorname{Col} A$, and $\operatorname{Row} A$. Determine both rank A and $\operatorname{dim}(\operatorname{Nul} A)$.

$$
\text { (a) } A=\left[\begin{array}{rrrrr}
1 & 3 & 4 & -1 & 2 \\
2 & 6 & 6 & 0 & -3 \\
3 & 9 & 3 & 6 & -3 \\
3 & 9 & 0 & 9 & 0
\end{array}\right] \text {, (b) } A=\left[\begin{array}{rrrrrr}
1 & 1 & -2 & 0 & 1 & -2 \\
1 & 2 & -3 & 0 & -2 & -3 \\
1 & -1 & 0 & 0 & 1 & 6 \\
1 & -2 & 2 & 1 & -3 & 0 \\
1 & -2 & 1 & 0 & 2 & -1
\end{array}\right]
$$

(2) Show that the given set is a basis for \mathbb{R}^{2}. Determine the change of coordinates matrix $P_{\mathcal{B}}$ and its inverse (use the order presented here). Then use this to find the indicated coordinate vectors.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
5 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\}
$$

Determine $[\mathbf{x}]_{\mathcal{B}}$ for
(a) $\mathrm{x}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$,
(b) $\mathrm{x}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$,
(c) $\mathbf{x}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
(3) Determine the dimension of the indicated vector space.
(a) The subspace of \mathbb{R}^{4} of vectors whose components sum to zero.
(b) The subspace of \mathbb{P}_{4} consisting of polynomials of the form $\mathbf{p}(t)=a t^{4}+b\left(t^{2}-t\right)$, for real numbers a and b.
(c) The null space of a 5×8 matrix with a rank of 4 .
(d) The row space of an $m \times n$ matrix whose null space has dimension 6. (It may be necessary to express the answer in terms of m or n or both.)
(4) Find a unit vector in the direction of $\mathbf{v}=(1,2,1,-3)$.
(5) Write the vector $\mathbf{u}=(0,-2,3,2)$ in the form $\mathbf{u}=\hat{\mathbf{u}}+\mathbf{z}$ where $\hat{\mathbf{u}}$ is parallel to \mathbf{v} and \mathbf{z} is orthogonal to \mathbf{v} for the vector v in problem (4). Use this to find the distance between the point $(0,-2,3,2)$ and the line $\operatorname{Span}\{\mathbf{v}\}$ in \mathbb{R}^{4}.
(6) Find a basis for $[\operatorname{Row}(A)]^{\perp}$, the orthogonal complement of the row space of the given matrix.

$$
A=\left[\begin{array}{rrrrr}
5 & 1 & 2 & 2 & 0 \\
3 & 3 & 2 & -1 & -12 \\
8 & 4 & 4 & -5 & 12 \\
2 & 1 & 1 & 0 & -2
\end{array}\right]
$$

(7) Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
2 \\
0 \\
1
\end{array}\right]
$$

(8) Suppose A is a square matrix and 2 is an eigenvalue of A. Explain why the matrix $A-2 I$ is a singular matrix.
(9) Determine the eigenvalues of the matrix $\left[\begin{array}{rrr}1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2\end{array}\right]$.
(10) For each eigenvalue of the matrix in the previous problem find a basis for the corresponing eigenspace.

