Practice for Exam 3 (Ritter) MATH 3260 Spring 2020

Sections Covered: 4.4, 4.5, 4.6, 6.1, 6.2, 6.3, 6.4
These practice problems are intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.

1. For each matrix A, find bases for $\operatorname{Nul} A, \operatorname{Col} A$, and $\operatorname{Row} A$. Determine both $\operatorname{rank} A$ and $\operatorname{dim}(\operatorname{Nul} A)$.

$$
\text { (a) } \quad A=\left[\begin{array}{rrrrr}
1 & 3 & 4 & -1 & 2 \\
2 & 6 & 6 & 0 & -3 \\
3 & 9 & 3 & 6 & -3 \\
3 & 9 & 0 & 9 & 0
\end{array}\right], \quad \text { (b) } \quad A=\left[\begin{array}{rrrrrr}
1 & 1 & -2 & 0 & 1 & -2 \\
1 & 2 & -3 & 0 & -2 & -3 \\
1 & -1 & 0 & 0 & 1 & 6 \\
1 & -2 & 2 & 1 & -3 & 0 \\
1 & -2 & 1 & 0 & 2 & -1
\end{array}\right]
$$

2. Show that the given set is a basis for \mathbb{R}^{2}. Determine the change of coordinates matrix $P_{\mathcal{B}}$ and its inverse (use the order presented here). Then use this to find the indicated coordinate vectors.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
5 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\}
$$

Determine $[\mathbf{x}]_{\mathcal{B}}$ for

$$
\text { (a) } \quad \mathbf{x}=\left[\begin{array}{l}
5 \\
1
\end{array}\right], \quad \text { (b) } \quad \mathbf{x}=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \quad \text { (c) } \quad \mathbf{x}=\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
$$

3. Determine the dimension of the indicated vector space.
(a) The subspace of \mathbb{R}^{4} of vectors whose components sum to zero.
(b) The subspace of \mathbb{P}_{4} consisting of polynomials of the form $\mathbf{p}(t)=a t^{4}+b\left(t^{2}-t\right)$, for real numbers a and b.
(c) The null space of a 5×8 matrix with a rank of 4 .
(d) The row space of an $m \times n$ matrix whose null space has dimension 6 . (It may be necessary to express the answer in terms of m or n or both.)
(e) The subspace of $M^{3 \times 3}$ consisting of matrices in which the entries in each column sum to zero (e.g. $\left[a_{i j}\right]$ such that $a_{1 j}+a_{2 j}+a_{3 j}=0$ for each $j=1,2,3$.)
4. Find a unit vector in the direction of $\mathbf{v}=(1,2,1,-3)$.
5. Write the vector $\mathbf{u}=(0,-2,3,2)$ in the form $\mathbf{u}=\hat{\mathbf{u}}+\mathbf{z}$ where $\hat{\mathbf{u}}$ is parallel to \mathbf{v} and \mathbf{z} is orthogonal to \mathbf{v} for the vector \mathbf{v} in problem (4). Use this to find the distance between the point $(0,-2,3,2)$ and the line $\operatorname{Span}\{\mathbf{v}\}$ in \mathbb{R}^{4}.
6. Find a basis for $[\operatorname{Row}(A)]^{\perp}$, the orthogonal complement of the row space of the given matrix.

$$
A=\left[\begin{array}{rrrrr}
5 & 1 & 2 & 2 & 0 \\
3 & 3 & 2 & -1 & -12 \\
8 & 4 & 4 & -5 & 12 \\
2 & 1 & 1 & 0 & -2
\end{array}\right]
$$

7. Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
2 \\
0 \\
1
\end{array}\right]
$$

8. Consider the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}=\left\{\left[\begin{array}{l}2 \\ 6 \\ 0\end{array}\right],\left[\begin{array}{c}-6 \\ 2 \\ 0\end{array}\right]\right\}$. Find the orthogonal projection of $\mathbf{y}=$ $\left[\begin{array}{c}3 \\ 5 \\ -4\end{array}\right]$ onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, and find the distance between \mathbf{y} and the plane $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
9. The first four Chebyshev polynomials are

$$
T_{0}(t)=1, \quad T_{1}(t)=t, \quad T_{2}(t)=2 t^{2}-1, \quad T_{3}(t)=4 t^{3}-3 t .
$$

(a) Show that the set $\left\{T_{0}, T_{1}, T_{2}, T_{3}\right\}$ is linearly independent in \mathbb{P}^{3}.
(b) Let $\mathbf{p}(t)=1+t+t^{2}+t^{3}$. Find the coordinate vector $[\mathbf{p}]_{\mathcal{C}}$ relative to the basis $\mathcal{C}=$ $\left\{T_{0}, T_{1}, T_{2}, T_{3}\right\}$.
(c) Find the polynomial \mathbf{q} in \mathbb{P}_{3} whose coordinate vector $[\mathbf{q}]_{\mathcal{C}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
10. Suppose a nonhomogeneous system of six linear equations in eight unknowns has a solution, with two free variables. Is it possible to change some constants on the equations' right sides to make the new system inconsistent? (Why/why not?)
11. Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]\right\}$. Find two nonzero, non-parallel vectors in W^{\perp}.

