Practice for Exam 3 (Ritter) MATH 3260 Spring 2020

Sections Covered: 4.4, 4.5, 4.6, 6.1, 6.2, 6.3, 6.4

These practice problems are intended to give you a rough idea of the types of problems you can expect to encounter. **Nothing else is intended or implied.**

1. For each matrix A, find bases for NulA, ColA, and RowA. Determine both rankA and dim(NulA).

(a)
$$A = \begin{bmatrix} 1 & 3 & 4 & -1 & 2 \\ 2 & 6 & 6 & 0 & -3 \\ 3 & 9 & 3 & 6 & -3 \\ 3 & 9 & 0 & 9 & 0 \end{bmatrix}$$
, (b) $A = \begin{bmatrix} 1 & 1 & -2 & 0 & 1 & -2 \\ 1 & 2 & -3 & 0 & -2 & -3 \\ 1 & -1 & 0 & 0 & 1 & 6 \\ 1 & -2 & 2 & 1 & -3 & 0 \\ 1 & -2 & 1 & 0 & 2 & -1 \end{bmatrix}$

2. Show that the given set is a basis for \mathbb{R}^2 . Determine the change of coordinates matrix $P_{\mathcal{B}}$ and its inverse (use the order presented here). Then use this to find the indicated coordinate vectors.

$$\mathcal{B} = \left\{ \left[\begin{array}{c} 5\\1 \end{array} \right], \left[\begin{array}{c} 2\\2 \end{array} \right] \right\}$$

Determine $[\mathbf{x}]_{\mathcal{B}}$ for

(a)
$$\mathbf{x} = \begin{bmatrix} 5\\1 \end{bmatrix}$$
, (b) $\mathbf{x} = \begin{bmatrix} 2\\2 \end{bmatrix}$, (c) $\mathbf{x} = \begin{bmatrix} -2\\3 \end{bmatrix}$

- **3.** Determine the dimension of the indicated vector space.
 - (a) The subspace of \mathbb{R}^4 of vectors whose components sum to zero.
 - (b) The subspace of \mathbb{P}_4 consisting of polynomials of the form $\mathbf{p}(t) = at^4 + b(t^2 t)$, for real numbers a and b.
 - (c) The null space of a 5×8 matrix with a rank of 4.
 - (d) The row space of an $m \times n$ matrix whose null space has dimension 6. (It may be necessary to express the answer in terms of m or n or both.)
 - (e) The subspace of $M^{3\times 3}$ consisting of matrices in which the entries in each column sum to zero (e.g. $[a_{ij}]$ such that $a_{1j} + a_{2j} + a_{3j} = 0$ for each j = 1, 2, 3.)

4. Find a unit vector in the direction of $\mathbf{v} = (1, 2, 1, -3)$.

5. Write the vector $\mathbf{u} = (0, -2, 3, 2)$ in the form $\mathbf{u} = \hat{\mathbf{u}} + \mathbf{z}$ where $\hat{\mathbf{u}}$ is parallel to \mathbf{v} and \mathbf{z} is orthogonal to v for the vector v in problem (4). Use this to find the distance between the point (0, -2, 3, 2) and the line Span{ \mathbf{v} } in \mathbb{R}^4 .

6. Find a basis for $[\operatorname{Row}(A)]^{\perp}$, the orthogonal complement of the row space of the given matrix.

A =	5	1	2	2	0]
	3	3	2	-1	-12
	8	4	4	-5	12
	2	1	1	0	$\begin{bmatrix} 0\\ -12\\ 12\\ -2 \end{bmatrix}$

7. Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 2\\2\\0\\1 \end{bmatrix}$$

8. Consider the set $\{\mathbf{u}_1, \mathbf{u}_2\} = \left\{ \begin{bmatrix} 2\\6\\0 \end{bmatrix}, \begin{bmatrix} -6\\2\\0 \end{bmatrix} \right\}$. Find the orthogonal projection of $\mathbf{y} = \begin{bmatrix} 2\\-2\\0 \end{bmatrix} = \begin{bmatrix} 2\\-2\\0 \end{bmatrix}$. $\begin{vmatrix} 3\\5\\-4 \end{vmatrix}$ onto Span{ u_1, u_2 }, and find the distance between y and the plane Span{ u_1, u_2 }.

9. The first four Chebyshev polynomials are

$$T_0(t) = 1$$
, $T_1(t) = t$, $T_2(t) = 2t^2 - 1$, $T_3(t) = 4t^3 - 3t$.

- (a) Show that the set $\{T_0, T_1, T_2, T_3\}$ is linearly independent in \mathbb{P}^3 .
- (b) Let $\mathbf{p}(t) = 1 + t + t^2 + t^3$. Find the coordinate vector $[\mathbf{p}]_{\mathcal{C}}$ relative to the basis \mathcal{C} = $\{T_0, T_1, T_2, T_3\}.$

(c) Find the polynomial \mathbf{q} in \mathbb{P}_3 whose coordinate vector $[\mathbf{q}]_{\mathcal{C}} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$.

10. Suppose a nonhomogeneous system of six linear equations in eight unknowns has a solution, with two free variables. Is it possible to change some constants on the equations' right sides to make the new system inconsistent? (Why/why not?)

11. Let
$$W = \text{Span} \left\{ \begin{bmatrix} 1\\0\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\1\\1 \end{bmatrix} \right\}$$
. Find two nonzero, non-parallel vectors in W^{\perp} .