Practice for Exam 3 (Ritter) MATH 3260 Spring 2020

Sections Covered: 4.4, 4.5, 4.6, 6.1, 6.2, 6.3, 6.4
These practice problems are intended to give you a rough idea of the types of problems you can expect to encounter. Nothing else is intended or implied.

1. For each matrix A, find bases for $\operatorname{Nul} A, \operatorname{Col} A$, and $\operatorname{Row} A$. Determine both $\operatorname{rank} A$ and $\operatorname{dim}(\operatorname{Nul} A)$.

$$
\text { (a) } \quad A=\left[\begin{array}{rrrrr}
1 & 3 & 4 & -1 & 2 \\
2 & 6 & 6 & 0 & -3 \\
3 & 9 & 3 & 6 & -3 \\
3 & 9 & 0 & 9 & 0
\end{array}\right], \quad \text { (b) } \quad A=\left[\begin{array}{rrrrrr}
1 & 1 & -2 & 0 & 1 & -2 \\
1 & 2 & -3 & 0 & -2 & -3 \\
1 & -1 & 0 & 0 & 1 & 6 \\
1 & -2 & 2 & 1 & -3 & 0 \\
1 & -2 & 1 & 0 & 2 & -1
\end{array}\right]
$$

All spanning sets shown are bases.
(a) $\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{r}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-3 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}, \quad \operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 6 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ -3 \\ 0\end{array}\right]\right\}$
$\operatorname{Row} A=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 3 \\ 0 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ 1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}, \quad \operatorname{rank} A=3, \quad \operatorname{dim}(\operatorname{Nul} A)=2$
(b) $\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{r}-1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}, \quad \operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ 2 \\ -1 \\ -2 \\ -2\end{array}\right],\left[\begin{array}{r}-2 \\ -3 \\ 0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}1 \\ -2 \\ 1 \\ -3 \\ 2\end{array}\right],\left[\begin{array}{r}-2 \\ -3 \\ 6 \\ 0 \\ -1\end{array}\right]\right\}$
$\operatorname{Row} A=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}, \quad \operatorname{rank} A=5, \quad \operatorname{dim}(\operatorname{Nul} A)=1$
2. Show that the given set is a basis for \mathbb{R}^{2}. Determine the change of coordinates matrix $P_{\mathcal{B}}$ and its inverse (use the order presented here). Then use this to find the indicated coordinate vectors.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
5 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right\}, \quad P_{\mathcal{B}}=\left[\begin{array}{ll}
5 & 2 \\
1 & 2
\end{array}\right], \quad \operatorname{det}(P)=8 \neq 0 \quad P_{\mathcal{B}}^{-1}=\frac{1}{8}\left[\begin{array}{rr}
2 & -2 \\
-1 & 5
\end{array}\right]
$$

Determine $[\mathbf{x}]_{\mathcal{B}}$ for
(a) $\quad \mathbf{x}=\left[\begin{array}{l}5 \\ 1\end{array}\right], \quad[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(b) $\quad \mathbf{x}=\left[\begin{array}{l}2 \\ 2\end{array}\right], \quad[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(c) $\mathbf{x}=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$
$[\mathrm{x}]_{\mathcal{B}}=\left[\begin{array}{c}-\frac{5}{4} \\ \frac{17}{8}\end{array}\right]$
3. Determine the dimension of the indicated vector space.
(a) The subspace of \mathbb{R}^{4} of vectors whose components sum to zero. 3
(b) The subspace of \mathbb{P}_{4} consisting of polynomials of the form $\mathbf{p}(t)=a t^{4}+b\left(t^{2}-t\right)$, for real numbers a and $b .2$
(c) The null space of a 5×8 matrix with a rank of 4.4
(d) The row space of an $m \times n$ matrix whose null space has dimension 6. (It may be necessary to express the answer in terms of m or n or both.) $n-6$
(e) The subspace of $M^{3 \times 3}$ consisting of matrices in which the entries in each column sum to zero (e.g. $\left[a_{i j}\right]$ such that $a_{1 j}+a_{2 j}+a_{3 j}=0$ for each $j=1,2,3$.) 6
4. Find a unit vector in the direction of $\mathbf{v}=(1,2,1,-3) .\left(\frac{1}{\sqrt{15}}, \frac{2}{\sqrt{15}}, \frac{1}{\sqrt{15}},-\frac{3}{\sqrt{15}}\right)$
5. Write the vector $\mathbf{u}=(0,-2,3,2)$ in the form $\mathbf{u}=\hat{\mathbf{u}}+\mathbf{z}$ where $\hat{\mathbf{u}}$ is parallel to \mathbf{v} and \mathbf{z} is orthogonal to \mathbf{v} for the vector \mathbf{v} in problem (4). Use this to find the distance between the point $(0,-2,3,2)$ and the line $\operatorname{Span}\{\mathbf{v}\}$ in $\mathbb{R}^{4} . \mathbf{u}=\left(-\frac{7}{15},-\frac{14}{15},-\frac{7}{15}, \frac{21}{15}\right)+\left(\frac{7}{15},-\frac{16}{15}, \frac{52}{15}, \frac{9}{15}\right)$. This is $\hat{\mathbf{u}}+\mathbf{z}$ written from left to right. The distance is $\|\mathbf{z}\|=\sqrt{3090} / 15$.
6. Find a basis for $[\operatorname{Row}(A)]^{\perp}$, the orthogonal complement of the row space of the given matrix.

$$
A=\left[\begin{array}{rrrrr}
5 & 1 & 2 & 2 & 0 \\
3 & 3 & 2 & -1 & -12 \\
8 & 4 & 4 & -5 & 12 \\
2 & 1 & 1 & 0 & -2
\end{array}\right] \quad\left\{\left[\begin{array}{r}
-\frac{1}{3} \\
-\frac{1}{3} \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
-\frac{10}{3} \\
\frac{26}{3} \\
0 \\
4 \\
1
\end{array}\right]\right\}
$$

7. Find an orthonormal basis for the subspace of \mathbb{R}^{4} spanned by the vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
2 \\
0 \\
1
\end{array}\right] \quad\left\{\left[\begin{array}{c}
\frac{1}{\sqrt{6}} \\
0 \\
\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{12}} \\
-\frac{3}{\sqrt{12}} \\
\frac{1}{\sqrt{12}} \\
-\frac{1}{\sqrt{12}}
\end{array}\right],\left[\begin{array}{c}
\frac{7}{\sqrt{68}} \\
\frac{3}{\sqrt{68}} \\
-\frac{1}{\sqrt{68}} \\
-\frac{3}{\sqrt{68}}
\end{array}\right]\right\}
$$

8. Consider the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}=\left\{\left[\begin{array}{l}2 \\ 6 \\ 0\end{array}\right],\left[\begin{array}{c}-6 \\ 2 \\ 0\end{array}\right]\right\}$. Find the orthogonal projection of $\mathbf{y}=$ $\left[\begin{array}{c}3 \\ 5 \\ -4\end{array}\right]$ onto $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$, and find the distance between \mathbf{y} and the plane $\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.
Calling the projection $\hat{\mathbf{y}}$, we have $\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|^{2}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|^{2}} \mathbf{u}_{2}=\left[\begin{array}{l}3 \\ 5 \\ 0\end{array}\right]$, and the distance is $\|\mathbf{y}-\hat{\mathbf{y}}\|=$ 4.
9. The first four Chebyshev polynomials are

$$
T_{0}(t)=1, \quad T_{1}(t)=t, \quad T_{2}(t)=2 t^{2}-1, \quad T_{3}(t)=4 t^{3}-3 t .
$$

(a) Show that the set $\left\{T_{0}, T_{1}, T_{2}, T_{3}\right\}$ is linearly independent in \mathbb{P}^{3}. A quick way to do this is to use coordinate vectors relative to the standard basis $\mathcal{E}=\left\{1, t, t^{2}, t^{3}\right\}$. The coordinate vectors would be

$$
\left[\mathbf{T}_{0}\right]_{\mathcal{E}}=(1,0,0,0), \quad\left[\mathbf{T}_{1}\right]_{\mathcal{E}}=(0,1,0,0), \quad\left[\mathbf{T}_{2}\right]_{\mathcal{E}}=(-1,0,2,0), \quad\left[\mathbf{T}_{3}\right]_{\mathcal{E}}=(0,-3,0,4)
$$

Popping these into a matrix, and taking the determinant

$$
\operatorname{det}\left(\left[\left[\mathbf{T}_{0}\right]_{\mathcal{E}}\left[\mathbf{T}_{1}\right]_{\mathcal{E}}\left[\mathbf{T}_{2}\right]_{\mathcal{E}}\left[\mathbf{T}_{3}\right]_{\mathcal{E}}\right]\right)=\operatorname{det}\left(\left[\begin{array}{rrrr}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -3 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]\right)=8 \neq 0
$$

The coordinate vectors are linearly independent, so the original vectors in \mathbb{P}_{3} are linearly independent.
(b) Let $\mathbf{p}(t)=1+t+t^{2}+t^{3}$. Find the coordinate vector $[\mathbf{p}]_{\mathcal{C}}$ relative to the basis $\mathcal{C}=$ $\left\{T_{0}, T_{1}, T_{2}, T_{3}\right\} .[\mathbf{p}]_{\mathcal{C}}=\left[\begin{array}{c}3 / 2 \\ 7 / 4 \\ 1 / 2 \\ 1 / 4\end{array}\right]$
(c) Find the polynomial \mathbf{q} in \mathbb{P}_{3} whose coordinate vector $[\mathbf{q}]_{\mathcal{C}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] \cdot \mathbf{q}(t)=-2 t+2 t^{2}+4 t^{3}$
10. Suppose a nonhomogeneous system of six linear equations in eight unknowns has a solution, with two free variables. Is it possible to change some constants on the equations' right sides to make the new system inconsistent? (Why/why not?) No, it's always consistent. Here are some hints as to how this is known. See if you can piece together an explanation.

- Think about the dimensions of the matrix if you wrote the system in the form $A \mathbf{x}=\mathbf{b}$.
- Knowing the size of A (some $m \times n$), as yourself what the maximum rank could be and by virtue what the minimum possible dimension of the null space could be.
- We know that the number of free variables is 2 . This relates to the dimension of the null space (how?).
- The rank tells you how many linearly independent columns you have. Can you argue that you have enough to span \mathbb{R}^{m} (for the value of m that you already determined)?

11. Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]\right\}$. Find two nonzero, non-parallel vectors in W^{\perp}. Probably the easiest thing to do is to set up a matrix that has W as it's row space. Then you can use that W^{\perp} is the null space of that matrix. The most obvious answer (not the only one) would be the pair $\underset{\text { corresponding matrix.) }}{\left\{\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right],\right.} \underset{\left(\begin{array}{c}-2 \\ -1 \\ 0 \\ 1\end{array}\right]}{[}$
