Review for Exam IV
 MATH 2306 sections 51 \& 54

Sections Covered: 7.2, 7.3, 11.2, 11.3

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Find the Laplace transform using any method.
(a) $\quad f(t)=e^{3 t}(t-1)^{2}$
(b) $\quad f(t)=t^{2} \mathscr{U}(t-1)-e^{t} \mathscr{U}(t-4)$
(c) $f(t)=\left\{\begin{array}{lc}2 t, & 0 \leq t<3 \\ 1, & 3 \leq t\end{array}\right.$
(2) Find the inverse Laplace transform using any method.
(a) $\quad F(s)=\frac{s}{s^{2}-4 s+10}$
(b) $\quad F(s)=\frac{2 s+5}{(s-3)^{2}}$
(c) $\quad F(s)=\frac{3 e^{-2 s}}{s(s+1)^{2}}$
(3) Solve the IVP using the Laplace transform.
(a) $\quad y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(0)=2, \quad y^{\prime}(0)=4$
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=42 t^{5} e^{-2 t} \quad y(0)=1, \quad y^{\prime}(0)=0$
(4) Solve the IVP using the Laplace transform.

$$
y^{\prime \prime}+y=\mathscr{U}\left(t-\frac{\pi}{4}\right), \quad y(0)=0, \quad y^{\prime}(0)=2
$$

(5) Find the Fourier series of the given function.
$f(x)= \begin{cases}0, & -1<x<0 \\ 2 x, & 0 \leq x<1\end{cases}$
(6) Without actually computing either half range series, produce a plot of the graph of three periods on the interval $(-3 p, 3 p)$ of (a) the half range cosine series, and (b) the half range sine series of the given function.

$$
f(x)=4-x^{2}, \quad 0<x<2
$$

(7) Find (a) the half range sine series and (b) the half range cosine series for f.

$$
f(x)= \begin{cases}1, & 0<x<1 \\ 2-x, & 1 \leq x<2\end{cases}
$$

(8) Find the Fourier series of

$$
f(x)=\left\{\begin{array}{lc}
-x-1, & -1<x<0 \\
1-x, & 0 \leq x<1
\end{array}\right.
$$

