Review for Exam IV

MATH 2306

Sections Covered: 15, 16, 17, 18

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Find the Laplace transform using any method.
(a) $\quad f(t)=e^{3 t}(t-1)^{2} \quad \mathscr{L}\{f(t)\}=\frac{2}{(s-3)^{3}}-\frac{2}{(s-3)^{2}}+\frac{1}{s-3}$
(b) $\quad f(t)=t^{2} \mathscr{U}(t-1)-e^{t} \mathscr{U}(t-4) \quad \mathscr{L}\{f(t)\}=\frac{2 e^{-s}}{s^{3}}+\frac{2 e^{-s}}{s^{2}}+\frac{e^{-s}}{s}-\frac{e^{4} e^{-4 s}}{s-1}$
(c) $f(t)=\left\{\begin{array}{cc}2 t, & 0 \leq t<3 \\ 1, & 3 \leq t\end{array}=2 t-2 t \mathscr{U}(t-3)+\mathscr{U}(t-3), \quad \mathscr{L}\{f(t)\}=\frac{2}{s^{2}}-\frac{2 e^{-3 s}}{s^{2}}-\frac{5 e^{-3 s}}{s}\right.$
(2) Find the inverse Laplace transform using any method.
(a) $\quad F(s)=\frac{s}{s^{2}-4 s+10} \quad \mathscr{L}^{-1}\{F(s)\}=e^{2 t} \cos (\sqrt{6} t)+\frac{2}{\sqrt{6}} e^{2 t} \sin (\sqrt{6} t)$
(b) $\quad F(s)=\frac{2 s+5}{(s-3)^{2}} \quad \mathscr{L}^{-1}\{F(s)\}=2 e^{3 t}+11 t e^{3 t}$
(c) $\quad F(s)=\frac{3 e^{-2 s}}{s(s+1)^{2}} \quad \mathscr{L}^{-1}\{F(s)\}=3 \mathscr{U}(t-2)-3 e^{-(t-2)} \mathscr{U}(t-2)-3(t-2) e^{-(t-2)} \mathscr{U}(t-2)$
(3) Solve the IVP using the Laplace transform.
(a) $\quad y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(0)=2, \quad y^{\prime}(0)=4 \quad y=2 e^{t} \cos (2 t)+e^{t} \sin (2 t)$
(b) $y^{\prime \prime}+3 y^{\prime}-4 y=80 t, \quad y(0)=1, \quad y^{\prime}(0)=-4 \quad y=-15-20 t+16 e^{t}$
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=42 t^{5} e^{-2 t} \quad y(0)=1, \quad y^{\prime}(0)=0 \quad y=t^{7} e^{-2 t}+2 t e^{-2 t}+e^{-2 t}$
(4) Solve the IVP using the Laplace transform.

$$
\begin{gathered}
y^{\prime \prime}+y=\mathscr{U}\left(t-\frac{\pi}{4}\right), \quad y(0)=0, \quad y^{\prime}(0)=2 \\
y=\mathscr{U}\left(t-\frac{\pi}{4}\right)-\cos \left(t-\frac{\pi}{4}\right) \mathscr{U}\left(t-\frac{\pi}{4}\right)+2 \sin t
\end{gathered}
$$

(5) An LRC series circuit has inductance 1 h , resistance 2 ohms and capacitance 0.1 f . The initial charge on the capacitor and current in the circuit are $q(0)=i(0)=0$. At time $t=0$, a unit pulse voltage is applied to the circuit so that the charge satisfies

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=\delta(t)
$$

The function $\delta(t)$ satisfies $\mathscr{L}\{\delta(t)\}=1$. Find the charge on the capacitor q for $t>0$ using the method of Laplace transforms. $\quad q(t)=\frac{1}{3} e^{-t} \sin (3 t) \quad 1$
(6) Suppose f is a function such that $f(0)=1$ and $\mathscr{L}\left\{f^{\prime}(t)\right\}=\frac{\ln s}{s}$. Determine $\mathscr{L}\{f(t)\}$. (In the words of Dennis Zill, "Don't think deep thoughts.") $\quad \mathscr{L}\{f(t)\}=\frac{\ln s}{s^{2}}+\frac{1}{s}$
(7) Find the Fourier series of the given function
(a) $f(x)=1, \quad-\pi<x<\pi \quad f(x)=1 \quad$ (Yeah, that's all!)
(b) $f(x)=\left\{\begin{array}{ll}0, & -2<x<0 \\ 2 x, & 0 \leq x<2\end{array} \quad f(x)=1+\sum_{n=1}^{\infty}\left[\frac{4\left((-1)^{n}-1\right)}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)+\frac{4(-1)^{n+1}}{n \pi} \sin \left(\frac{n \pi x}{2}\right)\right]\right.$
(c) $f(x)=\left\{\begin{array}{lc}-x-1, & -1<x<0 \\ 1-x, & 0 \leq x<1\end{array} \quad f(x)=\sum_{n=1}^{\infty} \frac{2}{n \pi} \sin (n \pi x)\right.$
(8) Consider the function in (7)(b) above. What does the series you found converge to at $x=0$, $x=1, x=2, x=4$ and $x=6 ? f$ is continuous at 0 and 1 so the series converges to $f(0)=0$

[^0]at $x=0$ and to $f(1)=2$ at $x=1$. The periodic extention with period 4 would have a jump discontinuity at $x=2$ with left limit $f\left(2^{-}\right)=4$ and right limit $f\left(-2^{+}\right)=0$. So the series converges in the mean to $\frac{4+0}{2}=2$ at $x=2$. The periodic extension would converge to $f(0)=0$ when $x=4$ and again converge in the mean to $\frac{4+0}{2}=2$ at $x=6$.

(8) Consider the function $f(x)=\left\{\begin{array}{ll}2 x, & 0 \leq x<\frac{1}{2} \\ 1, & \frac{1}{2} \leq x<1\end{array}\right.$. Give a plot of the half range sine series and a plot of the half range cosine series of f over the interval $[-3,3]$. Find each of these series.

$$
\begin{aligned}
& f(x)=\frac{3}{4}+\sum_{n=1}^{\infty}\left[\frac{4}{n^{2} \pi^{2}}\left(\cos \left(\frac{n \pi}{2}\right)-1\right) \cos (n \pi x)\right] \\
& f(x)=\sum_{n=1}^{\infty}\left(\frac{4}{n^{2} \pi^{2}} \sin \left(\frac{n \pi}{2}\right)-\frac{\left.2(-1)^{n}\right)}{n \pi}\right) \sin (n \pi x)
\end{aligned}
$$

Figure 1: In each figure, the part of the curve shown in blue is the plot of $f(x)$. Note the open and closed points on the top plot showing convergence in the mean.

[^0]: ${ }^{1}$ Technically speaking, this should be multiplied by the unit step centered at zero, $\mathscr{U}(t)$. This solution is valid for $t>0$, but the solution is not differentiable in the traditional sense at zero.

