Review for Exam IV

MATH 2306 sections 51 \& 54

Sections Covered: 7.2, 7.3, 11.2, 11.3

This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Find the Laplace transform using any method.
(a) $f(t)=e^{3 t}(t-1)^{2} \quad \mathscr{L}\{f(t)\}=\frac{2}{(s-3)^{3}}-\frac{2}{(s-3)^{2}}+\frac{1}{s-3}$
(b) $\quad f(t)=t^{2} \mathscr{U}(t-1)-e^{t} \mathscr{U}(t-4)$ $\mathscr{L}\{f(t)\}=\frac{2 e^{-s}}{s^{3}}+\frac{2 e^{-s}}{s^{2}}+\frac{e^{-s}}{s}-\frac{e^{4} e^{-4 s}}{s-1}$
(c) $f(t)=\left\{\begin{array}{cc}2 t, & 0 \leq t<3 \\ 1, & 3 \leq t\end{array} \quad \mathscr{L}\{f(t)\}=\frac{2}{s^{2}}-\frac{2 e^{-3 s}}{s^{2}}-\frac{5 e^{-3 s}}{s}\right.$
(2) Find the inverse Laplace transform using any method.
(a) $\quad F(s)=\frac{s}{s^{2}-4 s+10} \quad \mathscr{L}^{-1}\{F(s)\}=e^{2 t} \cos (\sqrt{6} t)+\frac{2}{\sqrt{6}} e^{2 t} \sin (\sqrt{6} t)$
(b) $\quad F(s)=\frac{2 s+5}{(s-3)^{2}} \quad \mathscr{L}^{-1}\{F(s)\}=2 e^{3 t}+11 t e^{3 t}$
(c) $\quad F(s)=\frac{3 e^{-2 s}}{s(s+1)^{2}} \quad \mathscr{L}^{-1}\{F(s)\}=3 \mathscr{U}(t-2)-3 e^{-(t-2)} \mathscr{U}(t-2)-3(t-2) e^{-(t-2)} \mathscr{U}(t-2)$
(3) Solve the IVP using the Laplace transform.
(a) $\quad y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(0)=2, \quad y^{\prime}(0)=4 \quad y=2 e^{t} \cos (2 t)+e^{t} \sin (2 t)$
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=42 t^{5} e^{-2 t} \quad y(0)=1, \quad y^{\prime}(0)=0 \quad y=t^{7} e^{-2 t}+2 t e^{-2 t}+e^{-2 t}$
(4) Solve the IVP using the Laplace transform.

$$
\begin{gathered}
y^{\prime \prime}+y=\mathscr{U}\left(t-\frac{\pi}{4}\right), \quad y(0)=0, \quad y^{\prime}(0)=2 \\
y=\mathscr{U}\left(t-\frac{\pi}{4}\right)-\cos \left(t-\frac{\pi}{4}\right) \mathscr{U}\left(t-\frac{\pi}{4}\right)+2 \sin t
\end{gathered}
$$

(5) Find the Fourier series of the given function.
$f(x)= \begin{cases}0, & -1<x<0 \\ 2 x, & 0 \leq x<1\end{cases}$

$$
f(x)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2\left((-1)^{n}-1\right)}{n^{2} \pi^{2}} \cos (n \pi x)+\frac{2(-1)^{n+1}}{n \pi} \sin (n \pi x)
$$

(6) Without actually computing either half range series, produce a plot of the graph of three periods on the interval $(-3 p, 3 p)$ of (a) the half range cosine series, and (b) the half range sine series of the given function.

$$
f(x)=4-x^{2}, \quad 0<x<2 \quad \text { See last page. }
$$

(7) Find (a) the half range sine series and (b) the half range cosine series for f.

$$
\begin{gathered}
f(x)= \begin{cases}1, & 0<x<1 \\
2-x, & 1 \leq x<2\end{cases} \\
\text { (a) } f(x)=\sum_{n=1}^{\infty}\left[\frac{2}{n \pi}+\frac{4 \sin \left(\frac{n \pi}{2}\right)}{n^{2} \pi^{2}}\right] \sin \left(\frac{n \pi x}{2}\right) \\
\text { (b) } f(x)=\frac{3}{4}+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left[\cos \left(\frac{n \pi}{2}\right)-(-1)^{n}\right] \cos \left(\frac{n \pi x}{2}\right)
\end{gathered}
$$

(8) Find the Fourier series of

$$
f(x)=\left\{\begin{array}{cc}
-x-1, & -1<x<0 \\
1-x, & 0 \leq x<1
\end{array} \quad f(x)=\sum_{n=1}^{\infty} \frac{2}{n \pi} \sin (n \pi x)\right.
$$

 of cosine series (blue)

f (black) with three periods of its sine series (blue)

