Additional Review for the Final

MATH 2306 (Ritter)

The final exam will be comprehensive. This contains a review of section 16.
This review is provided as a courtesy to give some idea of what material is covered. Nothing else is intended or implied.
(1) Solve the IVP using the Laplace transform.
(a) $\quad y^{\prime \prime}+4 y=1 \quad y(0)=0, \quad y^{\prime}(0)=-1$
(b) $\quad y^{\prime \prime}-y=2 \cos (5 t) \quad y(0)=0, \quad y^{\prime}(0)=0$
(c) $\quad y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(0)=2, \quad y^{\prime}(0)=4$
(d) $y^{\prime \prime}+4 y^{\prime}+4 y=42 t^{5} e^{-2 t} \quad y(0)=1, \quad y^{\prime}(0)=0$
(2) Solve the IVP using the Laplace transform.

$$
y^{\prime}-7 y=f(t), \quad y(0)=0 \quad \text { where } \quad f(t)=\left\{\begin{array}{cc}
t, & 0 \leq t<1 \\
2, & t \geq 1
\end{array}\right.
$$

(3) Solve the IVP using the Laplace transform.

$$
y^{\prime \prime}+y=\mathscr{U}\left(t-\frac{\pi}{4}\right), \quad y(0)=0, \quad y^{\prime}(0)=2
$$

(4) Note that differentiating with respect to s inside the integral produces the formula

$$
\frac{d}{d s} F(s)=\int_{0}^{\infty}\left(\frac{d}{d s} e^{-s t}\right) f(t) d t=\int_{0}^{\infty} e^{-s t}(-t f(t)) d t
$$

That is, if $F(s)=\mathscr{L}\{f(t)\}$, then $\mathscr{L}\{t f(t)\}=-F^{\prime}(s)$. Use this new rule along with the table of transforms to compute each transform
(a) $\mathscr{L}\{t \sin t\}$
(b) $\mathscr{L}\{t \cos (3 t)\}$
(c) $\mathscr{L}\left\{t e^{t} \cos (t)\right\}$

