Math 2306 Practice - Fourier Series

Names:

(1) Use the identity \(\sin(A) \cos(B) = \frac{1}{2} \left[\sin(A + B) + \sin(A - B) \right] \) to show that for any positive integers \(m \) and \(n \)
\[
\int_{-\pi}^{\pi} \sin(mx) \cos(nx) \, dx = 0
\]

(2) Consider the function \(f(x) = \begin{cases}
1, & -\pi < x < 0 \\
x, & 0 \leq x < \pi
\end{cases} \)
(a) Find the average value\(^1\) of \(f \) on \((-\pi, \pi)\) (the integral of \(f \) divided by the length of the interval).

\(^1\)Note that this average value is equal to \(\frac{a_0}{\pi} \) that appears in the Fourier series of \(f \).
(b) Still working with this same function, \(f(x) = \begin{cases}
1, & -\pi < x < 0 \\
x, & 0 \leq x < \pi
\end{cases} \), find \(a_n \) and \(b_n \) and write out the Fourier series of \(f \). (You already found \(\frac{a_0}{2} \); don’t redo it.)