
September 10 MATH 1113 sec. 51 Fall 2018

Section 3.2 & 3.3: Quadratic Functions and Quadratic Equations

Factorable and Irreducible If a quadratic polynomial
f (x) = ax2 + bx + c has real zeros x0 and x1 (not necessarily distinct),
then it can be factored and written as

f (x) = a(x − x0)(x − x1).

If f has no real zeros, which can be determined for example by looking
at the discriminant, then f is said to be irreducible.

This is exhaustive! That is, every quadratic is either factorable as a
product of linear factors or it is irreducible.
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Section 4.3: Polynomial Division, Remainders &
Factors

Suppose we wish to plot a polynomial such as f (x) = −x3 + 6x2 − 9x .
One step in the process is finding intercepts.

It would be helpful to know that

f (x) = −x(x2 − 6x + 9) = −x(x − 3)2.

In particular, from the factored form it is easy to see that because x − 3
is a factor of f , f (3) = 0.
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Polynomial Division

We can use long division to determine if one polynomial (usually first
degree) is a factor of another. Given a polynomial P of degree n and a
polynomial d of degree k with k < n, we can write

P(x) = d(x)Q(x) + R(x)

where Q and R are polynomials1. The degree of Q is n − k and the
degree of R is less than k .

1P dividend, d divisor, Q quotient, R remainder
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Example

Divide f (x) = 3x3 + 11x2 − 2x + 8 by (a) x − 1, and by (b) x + 4.
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Question
Find the quotient Q(x) and the remainder R(x) from the division

(3x4 − x3 − 2x2 + 2x − 1) ÷ (x − 2)

(a) Q(x) = 3x3 − 7x2 + 12x − 22, and R(x) = 43

(b) Q(x) = 3x3 − 7x2 + 12x , and R(x) = −22x − 1

(c) Q(x) = 3x3 + 5x2 + 8x , and R(x) = 18x − 1

(d) Q(x) = 3x3 + 5x2 + 8x + 18, and R(x) = 35

(e) I know how to do this, but my answer is not here.
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The Remainder Theorem

Recall that we found that x + 4 is a factor of f (x) = 3x3 + 11x2− 2x + 8
(remainder 0), and x − 1 was not (remainder 20) . In fact, we can note
that f (−4) = 0 and f (1) = 20. This illustrates the following theorem.

Theorem:
If the polynomial

f (x) = (x − c)Q(x) + R,

then f (c) = R. That is, f (c) is the remainder when f is divided by the
factor x − c.
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Corollary: The Factor Theorem

Theorem:
For polynomial f , f (c) = 0 if and only if x − c is a factor of f .
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Question

Suppose f is a polynomial and f (7) = 0.Which of the following must be
true?

(a) f has x-intercept (7,0).

(b) The remainder when f is divided by x − 7 is zero.

(c) x − 7 is a factor of f .

(d) All of the above are true.

(e) None of the above is true.
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Section 4.1: Polynomials of Degree n ≥ 2

f (x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0,

End Behavior: What happens as x →∞ and x → −∞

Figure: The ends of the graph go up or down. The behavior is determined by
the degree n and the sign of the leading coefficient an.
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Question
Given the graph, which of the following can be true of the polynomial f?
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Roots, Zeros, and x-intercepts

Given f (x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0,
I a number x0 such that f (x0) = 0 is called a zero of the function f ,

I the number x0 is a root of the polynomial equation f (x) = 0, and

I the point (x0,0) is an x-intercept on the graph of the function f .

Finding the x-intercepts of a line or quadratic is a snap! For higher
degree polynomials, it may be quite difficult.

We may be able to use some theorems on polynomial zeros. It
may be that technological assistance is require.
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Example

Find all of the x-intercepts on the graph of f (x) = x3 − 4x2 + 4x .
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