September 10 MATH 1113 sec. 52 Fall 2018

Section 3.2 \& 3.3: Quadratic Functions and Quadratic Equations

Discriminant Given $a x^{2}+b x+c$, the discriminant of the quadratic is the number

$$
b^{2}-4 a c
$$

Theorem: The quadratic equation $a x^{2}+b x+c=0$ has
(a) no real solutions if $b^{2}-4 a c<0$
(b) one real solution if $b^{2}-4 a c=0$, and
(c) two distinct real solutions if $b^{2}-4 a c>0$.

Definition: A quadratic polynomial is called irreducible if it's discriminant is negative.

Question

The discriminant of $3 x^{2}-12 x+7$ is
(a) 60

$$
b^{2}-4 a c=(-12)^{2}-4 \cdot 3 \cdot 7
$$

(b) -228

$$
=60
$$

(c) -60
(d) 228

Question

If $f(x)=0 \Rightarrow(x-h)^{2}=-k$
Suppose $f(x)=(x-h)^{2}+k$ and $k>0$ (i.e. k is positive). Which of the following must be true about the x-intercepts of f ?

$$
f(x)=x^{2}-2 h x+h^{2}+h \quad b=-2 h, a=1, c=h^{2}+k
$$

(a) The point (h, k) is the only x-intercept.

$$
b^{2}-4 a c=(-2 h)^{2}-4(1)\left(h^{2}+k\right)
$$

(b) f has two different x-intercepts.

$$
=4 h^{2}-4 h^{2}-4 k=-4 k
$$

(c) f doesn't have any x-intercepts because the discriminant is $-4 k$ which is negative.
(d) Nothing can be said about x-intercepts without knowing the sign of h.

Factorable and Irreducible

If a quadratic polynomial $f(x)=a x^{2}+b x+c$ has real zeros x_{0} and x_{1} (not necessarily distinct), then it can be factored and written as

$$
f(x)=a\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

If f has no real zeros, which can be determined for example by looking at the discriminant, then f is said to be irreducible.

This is exhaustive! That is, every quadratic is either factorable as a product of linear factors or it is irreducible.

Section 4.3: Polynomial Division, Remainders \& Factors

Suppose we wish to plot a polynomial such as $f(x)=-x^{3}+6 x^{2}-9 x$. One step in the process is finding intercepts.

It would be helpful to know that

$$
f(x)=-x\left(x^{2}-6 x+9\right)=-x(x-3)^{2} .
$$

In particular, from the factored form it is easy to see that because $x-3$ is a factor of $f, f(3)=0$.

$$
f(3)=-3(3-3)^{2}=-3 \cdot 0^{2}=0
$$

Polynomial Division

We can use long division to determine if one polynomial (usually first degree) is a factor of another. Given a polynomial P of degree n and a polynomial d of degree k with $k<n$, we can write

$$
P(x)=d(x) Q(x)+R(x)
$$

where Q and R are polynomials ${ }^{1}$. The degree of Q is $n-k$ and the degree of R is less than k.
${ }^{1} P$ dividend, d divisor, Q quotient, R remainder

Example
Divide $f(x)=3 x^{3}+11 x^{2}-2 x+8$ by (a) $x-1$, and by (b) $x+4$.
Long division is just like long division with integers except that the "places" are powers of x as opposed to powers of 10 .
(a)

$$
\begin{array}{rlr}
x-1 & \frac{3 x^{2}+14 x+12}{3 x^{3}+11 x^{2}-2 x+8} \\
-\frac{\left(3 x^{3}-3 x^{2}\right)}{14 x^{2}-2 x} & 3 x^{3}=x\left(3 x^{2}\right) \\
-\left(14 x^{2}-14 x\right) & 14 x^{2}=x(14 x)
\end{array}
$$

$$
12 x+8 \quad 12 x=x(12)
$$

$$
-\frac{(12 x-12)}{20}
$$

This is the remainder the degree is smaller than 1
This is interpreted as

$$
\begin{array}{ccc}
3 x^{3}+11 x^{2}-2 x+8 & = & (x-1)\left(3 x^{2}+14 x+12\right)+20 \\
P & d & R
\end{array}
$$

Also, for $x \neq 1$

$$
\frac{3 x^{3}+11 x^{2}-2 x+8}{x-1}=3 x^{2}+14 x+12+\frac{20}{x-1}
$$

(3)

$$
\begin{aligned}
& x + 4 \longdiv { 3 x ^ { 2 } - x + 2 } 3 x ^ { 3 } + 1 1 x ^ { 2 } - 2 x + 8 ~ \\
& \frac{-\left(3 x^{3}+12 x^{2}\right)}{-x^{2}-2 x} \\
& \frac{-\left(-x^{2}-4 x\right)}{2 x+8} \\
& \frac{-(2 x+8)}{0} \\
& 3 x^{3}+11 x^{2}-2 x+8=(x+4)\left(3 x^{2}-x+2\right) \\
& p \quad d \quad Q \quad R \text { is zero }
\end{aligned}
$$

Question

Find the quotient $Q(x)$ and the remainder $R(x)$ from the division

$$
\left(3 x^{4}-x^{3}-2 x^{2}+2 x-1\right) \div(x-2)
$$

(a) $Q(x)=3 x^{3}-7 x^{2}+12 x-22$, and $R(x)=43$
(b) $Q(x)=3 x^{3}-7 x^{2}+12 x$, and $R(x)=-22 x-1$
(c) $Q(x)=3 x^{3}+5 x^{2}+8 x$, and $R(x)=18 x-1$
(d) $Q(x)=3 x^{3}+5 x^{2}+8 x+18$, and $R(x)=35$
(e) I know how to do this, but my answer is not here.

The Remainder Theorem

Recall that we found that $x+4$ is a factor of $f(x)=3 x^{3}+11 x^{2}-2 x+8$ (remainder 0), and $x-1$ was not (remainder 20). In fact, we can note that $f(-4)=0$ and $f(1)=20$. This illustrates the following theorem.

Theorem:
If the polynomial

$$
f(x)=(x-c) Q(x)+R,
$$

then $f(c)=R$. That is, $f(c)$ is the remainder when f is divided by the factor $x-c$.

$$
f(c)=(c-c) Q(c)+R=0+R=R
$$

Corollary: The Factor Theorem

Theorem:
For polynomial $f, f(c)=0$ if and only if $x-c$ is a factor of f.

Question

Suppose f is a polynomial and $f(7)=0$. Which of the following must be true?
(a) f has x-intercept $(7,0)$.
(b) The remainder when f is divided by $x-7$ is zero.
(c) $x-7$ is a factor of f.
(d) All of the above are true.
(e) None of the above is true.

