Sept 12 Math 2306 sec. 53 Fall 2018

Section 5: First Order Equations Models and Applications

A Classic Mixing Problem If we are tracking the amount A of some substance (e.g. salt) disolved in some fluid in which we know the flow rates at which fluid is entering $\left(r_{i}\right)$ and leaving $\left(r_{0}\right)$ a receptacle, the initial volume $V(0)$ of fluid, and the substance concentration of the inflow c_{i}, then for a well mixed solution

$$
\frac{d A}{d t}=r_{i} \cdot c_{i}-r_{o} \frac{A}{V} .
$$

Here $V(t)=V(0)+\left(r_{i}-r_{0}\right) t$. This equation is first order linear

$$
\frac{d A}{d t}+\frac{r_{0}}{V} A=r_{i} c_{i}
$$

There is nothing precluding one of the coefficeints such as r_{0}, r_{i} or c_{i} from being a nonconstant function of time.

Mixing Problem w/ Non-constant Volume
A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the rate of $10 \mathrm{gal} / \mathrm{min}$. Set up the initial value problem governing the amount (pounds) of salt $A(t)$ at time t in minutes. Determine the time interval for which the differential equation is valid.

$$
\frac{d A}{d t}=r_{i} c_{i}-r_{0} c_{0} \text { where } C_{0}=\frac{A}{V}
$$

Here $r_{i}: S$ ad/ min, $c_{i}=2 \frac{\mathrm{lb}}{\mathrm{gal}}$
$S_{0}=10 \mathrm{ge} / \mathrm{min}$

$$
C_{0}=\frac{A}{v(0)+\left(r_{i}-r_{0}\right) t}=\frac{A}{500+(s-10) t}=\frac{A}{s 00-s t}
$$

Note co is orly valid until $V=0$

$$
\begin{gathered}
500-s t=0 \Rightarrow t=100 \\
\frac{d A}{d t}=10-10 \frac{A}{500-5 t}=10-\frac{10}{500-5 t} A \\
\frac{d A}{d t}+\frac{2}{100-t} A=10 \text { with } A(0)=0
\end{gathered}
$$

valid for $0 \leq t<100$

Mixing Problem w/ Non-constant Volume

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the rate of $10 \mathrm{gal} / \mathrm{min}$. Set up the initial value problem governing the amount of salt A. Determine the time interval for which the differential equation is valid.

Solving the problem is left as an exercise. The correct solution will be

$$
A(t)=10(100-t)-\frac{(100-t)^{2}}{10} \quad \text { valid for } \quad 0 \leq t<100
$$

A Nonlinear Modeling Problem

A population $P(t)$ of tilapia changes at a rate jointly proportional to the current population and the difference between the constant carrying capacity ${ }^{1} \mathrm{M}$ of the environment and the current population. Determine the differential equation satsified by P.

Current population P, difference between M and P

$$
\begin{gathered}
P \quad M-P \\
\frac{d P}{d t} \propto P(M-P) \\
\Rightarrow \quad \frac{d P}{d t}=k P(M-P) \text { for some constant } k
\end{gathered}
$$

${ }^{1}$ The carrying capacity is the maximum number of individuals that the environment can support due to limitation of space and resources.

Logistic Differential Equation

The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
Solve this equation ${ }^{2}$ and show that for any $P(0) \neq 0, P \rightarrow M$ as $t \rightarrow \infty$.
The ODE is separable

$$
\frac{1}{P(m-P)} \frac{d P}{d t}=k \Rightarrow \frac{1}{P(m-P)} d P=k d t
$$

$$
\int \frac{1}{P(m-P)} d P=\int k d t
$$

${ }^{2}$ The partial fraction decomposition

$$
\frac{1}{P(M-P)}=\frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right)
$$

is useful.

Using the parted fraction deconp

$$
\begin{aligned}
\int \frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right) d P & =\int k d t \\
\int\left(\frac{1}{P}+\frac{1}{M-P}\right) d P & =\int k M d t \\
\ln P-\ln |M-P| & =k M t+C
\end{aligned}
$$

Using \log properties

$$
\begin{aligned}
\ln \left|\frac{P}{M-P}\right| & =k M t+C \\
\left|\frac{P}{M-P}\right| & =e^{k M t+C}=e^{C} e^{k M t}
\end{aligned}
$$

September 12, $2018 \quad 8 / 46$

Let $A=e^{c}$ or $-e^{c}$

$$
\frac{p}{m-p}=A e^{k M t}
$$

Let $P(0)=P_{0}$, then applying this condition

$$
\begin{aligned}
& \frac{P_{0}}{M-P_{0}}=A e^{0}=A \Rightarrow A=\frac{P_{0}}{M-P_{0}} \text { souths } \\
& \frac{P}{M-P}=A e^{k M t} \Rightarrow P=A e^{k M t}(M-P) \\
& P=A M e^{k M t}-A P e^{k M t}
\end{aligned}
$$

$$
\begin{gathered}
P+A P e^{k m t}=A M e^{k M t} \\
\left(1+A e^{k m t}\right) P=A M e^{k m t} \\
P=\frac{A M e^{k M t}}{1+A e^{k m t}}
\end{gathered}
$$

using $A=\frac{P_{0}}{M-P_{0}}$

$$
P=\frac{\frac{P_{0}}{M-P_{0}} M e^{k M t}}{1+\frac{P_{0}}{M-P_{0}} e^{k M t}} \cdot\left(\frac{M-P_{0}}{M-P_{0}}\right)
$$

$$
P(t)=\frac{P_{0} M e^{k M t}}{M-P_{0}+P_{0} e^{k M t}}
$$

This is the solution to the logistic equation subject to

$$
P(0)=P_{0}
$$

The long time population

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} P(t)=\lim _{t \rightarrow \infty} \frac{P_{0} M e^{k M t}}{M-P_{0}+P_{0} e^{k n t}}=\frac{\infty}{\infty} \\
& \begin{array}{l}
\text { by aide } \\
l^{\prime 1+} \operatorname{cofl}_{\text {rue }}
\end{array}=\lim _{t \rightarrow \infty} \frac{P_{0} M \text { hmM } e^{k M t}}{P_{0} k \cdot M e^{k M t}}
\end{aligned}
$$

$$
=\lim _{t \rightarrow \infty} M=M
$$

The limit is M as expected.

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Homogeneous Equations

We'll consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

and assume that each a_{i} is continuous and a_{n} is never zero on the interval of interest.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval l, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.
This is called the principle of superposition.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval l if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } I .
$$

A set of functions that is not linearly dependent on / is said to be linearly independent on I.

