
September 14 MATH 1113 sec. 52 Fall 2018
Section 4.1: Polynomials of Degree n ≥ 2

Theorem: (The Fundamental Theorem of Algebra) Every
polynomial of degree n with real coefficients has exactly n complex
zeros.

Some comments:
I The zeros are not necessarily distinct. For example

f (x) = (x − 2)4 four zeros, but they are all the one number 2. (This
is called accounting for multiplicity.

I The zeros are not necessarily real numbers. For example
f (x) = x2 + 1 has two zeros i and −i . These are both complex
numbers.

I Every polynomial of odd degree must have at least one real
number zero. WHY? (hint: think about the end behavior)

I The number of distinct real zeros CANNOT exceed the degree.
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Minute Exercise

Plot the functions p(x) = 1 and q(x) = 0. Write a few sentences
addressing the questions:

I How may zeros—x-intercepts—does p have? How many does q
have?

I How does this related to the fact that the degree of p is zero, but
the degree of q is not defined?
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Section 4.2: Graphing a Polynomial
Turning Points

Definition: A turning point on the graph of a function f is a point at
which f changes from increasing to decreasing or from decreasing to
increasing. Note that a turning point is a relative maximum or a relative
minimum.

Theorem: If P(x) is a polynomial of degree n, then the graph of P has
at most n − 1 turning points.

There are Caclulus tools that can help you to find the location of
turning points.

September 12, 2018 3 / 56



Recap on Polynomial Features

We want to graph and recognize graphs of polynomials. Here’s a
laundry list of things we know about a polynomial P of degree n.

I The domain is all reals, and the graphs are continuous and
smooth.

I The degree and leading coefficient determine how the graph
behaves at the far left and right.

I There are at most n x-intercepts, and exactly n complex zeros
accounting for multiplicity.

I There are at most n − 1 turning points.
I The graph crosses (odd) or is tangent (even) to the x-axis based

on the multiplicity of the zero.
I Are we missing anything?
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Question
Consider the plot of the polynomial P. Note the end behavior of P and
that P has five x-intercepts.

True or False: The degree of P is an even number that is greater than
or equal to 6.
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Question
Consider the plot of the polynomial P. Note the end behavior of P and
that P has five x-intercepts.

True or False: The leading coefficient of P must be negative.
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Question
Consider the plot of the polynomial P. The graph of P contains the
point (6,0).

True or False: 6 is a zero of P, and it’s multiplicity is even.
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Question
Consider the plot of the polynomial P. The zeros of P are −3, −1, 0, 2
and 6.

True or False: Only one of the zeros of P has even multiplicity.
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Graphing a Polynomial

Sketch a plot of the graph of f (x) = −x3 + 6x2 − 9x .

We’ll do the following preliminary work, then use the information to
sketch.

1. Determine the end behavior.
2. Find the y -intercept (0, f (0))
3. Find the x-intercepts. Make note of multiplicity.
4. Divide the x-axis into intervals according to the zeros, and check

the sign of f in each interval.
5. Plot the intercepts and points used in the previous step.
6. Cross reference the facts (number of roots, zero multiplicities,

maximum number of turning points), and sketch.
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f (x) = −x3 + 6x2 − 9x
There is a table a couple of slides away to keep track of the relevant
details.
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f (x) = −x3 + 6x2 − 9x
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f (x) = −x3 + 6x2 − 9x
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Interval

test pt c

f (c)

sign
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