Sept. 14 Math 1190 sec. 51 Fall 2016

Section 2.1: Rates of Change and the Derivative

Let $y=f(x)$. For $x \neq c$ we'll call $\frac{f(x)-f(c)}{x-c}$ the average rate of change of f on the interval from x to c.

We'll call

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \text { the rate of change of } f \text { at } c
$$

if this limit exists.

Definition: Let $y=f(x)$ at let c be in the domain of f. The derivative of f at c is denoted $f^{\prime}(c)$ and is defined as

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

provided the limit exists.

The Derivative

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

In addition to the derivative of f at c, the notation $f^{\prime}(c)$ is read as

- f prime of c, or
- f prime at c.

At this point, we have several interpretations of this same number $f^{\prime}(c)$.

- as a velocity if f is the position of a moving object,
- as a rate of change of the function f when $x=c$,
- as the slope of the line tangent to the graph of f at $(c, f(c))$.

Example
Find $g^{\prime}(2)$ if $g(x)=x^{4}$.
By definition

$$
\begin{aligned}
g^{\prime}(2) & =\lim _{x \rightarrow 2} \frac{g(x)-g(2)}{x-2} \quad g(2)=2^{4}=16 \\
& =\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{\left(x^{2}-4\right)\left(x^{2}+4\right)}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)\left(x^{2}+4\right)}{x-2}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2}(x+2)\left(x^{2}+4\right) \\
& =(2+2)\left(2^{2}+4\right)=4(8)=32
\end{aligned}
$$

$$
g^{\prime}(2)=32
$$

Section 2.2: The Derivative as a Function

If $f(x)$ is a function, then the set of numbers $f^{\prime}(c)$ for various values of c can define a new function. To proceed, we consider an alternative formulation for $f^{\prime}(c)$.

If it exists, then $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$. Let $h=x-c$. Then $h \rightarrow 0$ if $x \rightarrow c$, and $x=c+h$. Hence we can write $f^{\prime}(c)$ as

$$
f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

The Derivative Function

Let f be a function. Define the new function f^{\prime} by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

called the derivative of f. The domain of this new function is the set

$$
\left\{x \mid x \text { is in the domain of } f, \text { and } f^{\prime}(x) \text { exists }\right\} .
$$

f^{\prime} is read as " f prime."

Example
Let $f(x)=\sqrt{x-1}$. Identify the domain of f. Find f^{\prime} and identify its domain.

For $f(x)$, we require $x-1 \geqslant 0 \Rightarrow x \geqslant 1$.
The domain of f is $[1, \infty)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h-1}-\sqrt{x-1}}{h} \quad \text { use conjugate } \\
& =\lim _{h \rightarrow 0}\left(\frac{\sqrt{x+h-1}-\sqrt{x-1}}{h}\right)\left(\frac{\sqrt{x+h-1}+\sqrt{x-1}}{\sqrt{x+h-1}+\sqrt{x-1}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x+h-1-(x-1)}{h(\sqrt{x+h-1}+\sqrt{x-1})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h-1}+\sqrt{x-1})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h-1}+\sqrt{x-1}} \\
& =\frac{1}{\sqrt{x+0-1}+\sqrt{x-1}}=\frac{1}{2 \sqrt{x-1}}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x-1}}
$$

For the domain, we require $x-1>0$

$$
\Rightarrow \quad x>1
$$

The domain of f^{\prime} is $(1, \infty)$.

Note: The domain of f was $[1, \infty)$. The domain of f^{\prime} is a little bit different.

* $[1, \infty)$ indices $1 \leq x<\infty$
where as
$(1, \infty)$ indicates $1<x<\infty$

Example Continued...
Use the results to find the equation of the line tangent to the graph of $f(x)=\sqrt{x-1}$ at the point $(2,1)$.

Recall that the slope of the tangut line e $(2,1)$ is $f^{\prime}(2)$.

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x-1}} \text { so } f^{\prime}(2)=\frac{1}{2 \sqrt{2-1}}=\frac{1}{2}
$$

$m_{\text {ton }}=\frac{1}{2}$ the point is (given) $(2,1)$

$$
y-1=\frac{1}{2}(x-2)
$$

Question

Let $f(x)=2 x^{2}+x ;$ determine $f^{\prime}(x)$.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

(a) $f^{\prime}(x)=4$
(b) $f^{\prime}(x)=2 x+1$
(c) $f^{\prime}(x)=4 x+x$
(d) $f^{\prime}(x)=4 x+1$

-
:

$$
=4 x+1
$$

How are the functions $f(x)$ and $f^{\prime}(x)$ related?

Remarks:

- if $f(x)$ is a function of x, then $f^{\prime}(x)$ is a new function of x (called the derivative of f)
- The number $f^{\prime}(c)$ (if it exists) is the slope of the curve of $y=f(x)$ at the point $(c, f(c))$
- this is also the slope of the tangent line to the curve of y at (c, $f(c)$)
- "slope of the curve", "slope of the tangent line", and "rate of change" are the same concept

Definition: A function f is said to be differentiable at c if $f^{\prime}(c)$ exists. It is called differentiable on an open interval $/$ if it is differentiable at each point in I.

Failure to be Differentiable
We saw that the domain of $f(x)=\sqrt{x-1}$ is $[1, \infty)$ whereas the domain of its derivative $f^{\prime}(x)=\frac{1}{2 \sqrt{x-1}}$ was $(1, \infty)$. Hence f is not differentiable at 1.

An Example: Show that $y=|x|$ is not differentiable at zero. Let $f(x)=|x|$ If $f^{\prime}(0)$ exists, it's equal to

$$
\begin{array}{ll}
& \lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
= & \lim _{h \rightarrow 0} \frac{|0+h|-|0|}{h}
\end{array} \quad \text { Recall } \quad|h|=\left\{\begin{array}{ll}
h, h \geqslant 0 \\
= & \lim _{h \rightarrow 0} \frac{|h|}{h}
\end{array} \quad h<0\right.
$$

we must take 2 one sided lints

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1 \\
& \lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=\lim _{h \rightarrow 0^{+}} 1=1
\end{aligned}
$$

These disagree, hence $\lim _{h \rightarrow 0} \frac{|h|}{h}$ DNE
$f^{\prime}(0)$ doesit exist. That is, $y=|x|$ is not differentiable © 3 er.

Failure to be differentiable: Discontinuity, Vertical tangent, or Corner/Cusp

Theorem

Differentiability implies continuity.

That is, if f is differentiable at c, then f is continuous at c. Note that the corner example shows that the converse of this is not true!

This means the a function con be continuous at a number c but not be differentiable there.

Questions
(1) True or False: Suppose that we know that $f^{\prime}(3)=2$. We can conclude that f is continuous at 3 .

True, diff implies cont.
(2) True or False: Suppose that we know that $f^{\prime}(1)$ does not exist. We can conclude that f is discontinuous at 1 .

False, not necessaing - could have a Cornea or cusp.

