Sept. 14 Math 1190 sec. 51 Fall 2016 Section 2.1: Rates of Change and the Derivative

Let y = f(x). For $x \neq c$ we'll call $\frac{f(x) - f(c)}{x - c}$ the average rate of change of f on the interval from x to c.

We'll call

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 the rate of change of f at c

if this limit exists.

Definition: Let y = f(x) at let *c* be in the domain of *f*. The **derivative** of *f* at *c* is denoted f'(c) and is defined as

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

provided the limit exists.

The Derivative

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

In addition to the derivative of f at c, the notation f'(c) is read as

- ► f prime of c, or
- f prime at c.

At this point, we have several interpretations of this same **number** f'(c).

- ▶ as a velocity if *f* is the position of a moving object,
- as a rate of change of the function f when x = c,
- as the slope of the line tangent to the graph of f at (c, f(c)).

Example

q (z) = 2 = 16

- $= \lim_{x \to z} (x+2)(x^{2}+4)$
 - $= (2+2)(z^2+4) = 4(8) = 32$

9'(2)=32

Section 2.2: The Derivative as a Function

If f(x) is a function, then the set of numbers f'(c) for various values of c can define a new function. To proceed, we consider an alternative formulation for f'(c).

If it exists, then $f'(c) = \lim_{x\to c} \frac{f(x)-f(c)}{x-c}$. Let h = x - c. Then $h \to 0$ if $x \to c$, and x = c + h. Hence we can write f'(c) as

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

The Derivative Function

Let f be a function. Define the new function f' by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

called the derivative of f. The domain of this new function is the set

 $\{x | x \text{ is in the domain of } f, \text{ and } f'(x) \text{ exists} \}.$

f' is read as "f prime."

Example

Let $f(x) = \sqrt{x-1}$. Identify the domain of f. Find f' and identify its domain.

For f(x), we require x-17,0 => x71. The domain of f is [1,00). $f'(x) = \lim_{h \to \infty} \frac{f'(x+h) - f'(x)}{h}$ $= \lim_{h \to 0} \frac{|x_{+h}| - 1}{|x_{+1}|} - \frac{|x_{-1}|}{|x_{+1}|}$ Use conjugate $= \lim_{h \to 0} \left(\frac{\sqrt{x+h-1}}{h} - \sqrt{x-1} \right) \left(\frac{\sqrt{x+h-1}}{\sqrt{x+h-1}} + \sqrt{x-1} \right)$

$$= \lim_{h \to 0} \frac{\chi_{+}h - \chi - (\chi_{-})}{h(\sqrt{\chi_{+}h - 1} + \sqrt{\chi_{-}1})}$$

=
$$\lim_{h \to 0} \frac{h}{h(J_{x+h-1} + J_{x-1})}$$

$$f'(x) = \frac{1}{2\sqrt{x-1}}$$

For the domain, we require
$$x-1>0$$

 $\Rightarrow x>1$.
The domain of f' is $(1, \infty)$.
Note: The domain of f was $(1, \infty)$.
The domain of f was $(1, \infty)$.
The domain of f was $(1, \infty)$.

* [1, Do) indicals 1 ≤ X < Do

where as

Example Continued...

Use the results to find the equation of the line tangent to the graph of $f(x) = \sqrt{x-1}$ at the point (2, 1).

Recall that the slope of the tangent line @ (2,1) is f'(2). $f'(x) = \frac{1}{2\sqrt{x-1}}$ so $f'(z) = \frac{1}{2\sqrt{z-1}} = \frac{1}{z}$ Mton = 12 the point is (given) (2,1) $y - 1 = \frac{1}{2}(x - 2)$

Question

Let
$$f(x) = 2x^2 + x$$
; determine $f'(x)$.
(a) $f'(x) = 4$
(b) $f'(x) = 2x + 1$
(c) $f'(x) = 4x + x$
(d) $f'(x) = 4x + 1$
 $f'(x) = 4x + 1$

How are the functions f(x) and f'(x) related?

Remarks:

- ► if f(x) is a function of x, then f'(x) is a new function of x (called the derivative of f)
- The number f'(c) (if it exists) is the slope of the curve of y = f(x) at the point (c, f(c))
- this is also the slope of the tangent line to the curve of y at (c, f(c))
- "slope of the curve", "slope of the tangent line", and "rate of change" are the same concept

Definition: A function *f* is said to be *differentiable* at *c* if f'(c) exists. It is called *differentiable* on an open interval *I* if it is differentiable at each point in *I*.

Failure to be Differentiable

We saw that the domain of $f(x) = \sqrt{x-1}$ is $[1, \infty)$ whereas the domain of its derivative $f'(x) = \frac{1}{2\sqrt{x-1}}$ was $(1, \infty)$. Hence *f* is not differentiable at 1.

An Example: Show that y = |x| is not differentiable at zero. Let f(y) = |x|

If f'(a) exists, it's equal to $\lim_{h \to 0} \frac{f(o+h) - f(o)}{h}$ $\lim_{h \to 0} \frac{|0+h| - |0|}{h}$ = lin <u>thl</u>

We must take 2 one sided limits

$$\lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = \lim_{h \to 0^-} -1 = -1$$

$$\lim_{h \to 0^+} \frac{\|h\|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} \frac{1}{h} = \frac{1}{h}$$

f'(0) doesn't exist. That is, y=1x1 is not differentichele @ 3er0.

Failure to be differentiable: Discontinuity, Vertical tangent, or Corner/Cusp

Theorem

Differentiability implies continuity.

That is, if f is differentiable at c, then f is continuous at c. Note that the corner example shows that the converse of this is not true!

Questions

(1) **True or False:** Suppose that we know that f'(3) = 2. We can conclude that *f* is continuous at 3.

True, diff implies cont.

(2) **True or False:** Suppose that we know that f'(1) does not exist. We can conclude that *f* is discontinuous at 1.