Sept 14 Math 2306 sec. 53 Fall 2018

Section 6: Linear Equations Theory and Terminology

The context here is linear $n^{\text {th }}$ order initial value problems. That is, solve

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

First we focus on Homogeneous Equations

We'll consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

and assume that each a_{i} is continuous and a_{n} is never zero on the interval of interest.

Theorem:(the principle of superposition) If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval I, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l .
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on l.

Example: A linearly Dependent Set

The functions $f_{1}(x)=\sin ^{2} x, f_{2}(x)=\cos ^{2} x$, and $f_{3}(x)=1$ are linearly dependent on $I=(-\infty, \infty)$.

Recall $\sin ^{2} x+\cos ^{2} x=1$ for all x
If we take $c_{1}=1, c_{2}=1, c_{3}=-1$ then

$$
\begin{aligned}
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} \cdot f_{3}(x) & = \\
\sin ^{2} x+\cos ^{2} x-1 & =0
\end{aligned}
$$

Note that at least one of the C^{\prime} 's is nonzero.

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.

Let's suppose that for some c_{1}, c_{2} that $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all x.

Sincethis holds for all x, it holds when $x=0$.
Not

$$
\begin{aligned}
& c_{1} f_{1}(0)+c_{2} f_{2}(0)=0 \\
& c_{1} \sin (0)+c_{2} \cos (0)=0 \\
& c_{1} \cdot 0+c_{2} \cdot 1=0 \quad \Rightarrow \quad c_{2}=0
\end{aligned}
$$

Similerly, the equation has to hold when $x=\frac{\pi}{2}$. With $c_{2}=0$ alrealy

$$
\begin{aligned}
c_{1} f_{1}\left(\frac{\pi}{2}\right) & =0 \\
c_{1} \sin \left(\frac{\pi}{2}\right) & =0 \\
c_{1} \cdot 1 & =0 \quad \Rightarrow c_{1}=0
\end{aligned}
$$

Both C_{1}, C_{2} must be zero.

Determine if the set is Linearly Dependent or Independent on $(-\infty, \infty)$

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

Consider $c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0 \quad \begin{gathered}\text { for all } \\ x\end{gathered}$
for some c_{1}, c_{2}, c_{3}

$$
c_{1} x^{2}+c_{2}(4 x)+c_{3}\left(x-x^{2}\right)=0
$$

collecting "like terms"

$$
\left(c_{1}-c_{3}\right) x^{2}+\left(4 c_{2}+c_{3}\right) x=0
$$

This will be true if

$$
c_{1}-c_{3}=0 \text { and } 4 c_{2}+c_{3}=0
$$

This will be true (for example) if

$$
c_{1}=1, \quad c_{3}=1 \text { and } c_{2}=\frac{-1}{4}
$$

So

$$
f_{1}(x)-\frac{1}{4} f_{2}(x)+f_{3}(x)=0 \quad \text { for all } x
$$

The functions are linearly dependent.

Definition of Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Determine the Wronskian of the Functions

$$
\left.\begin{array}{l}
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x \\
W\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{cc}
\sin x & \cos x \mid \\
\cos x & -\sin x
\end{array}\right|
\end{array} \begin{array}{c}
\text { functions } \Rightarrow \\
2 x^{2} \\
\text { motrin } x
\end{array}\right] \left.\begin{array}{ll}
f_{1}(x) & f_{2}(x) \\
f^{\prime}(x) & f_{2}^{\prime}(x)
\end{array} \right\rvert\,
$$

So $w\left(f_{1}, f_{2}\right)(x)=-1$

