September 14 Math 2306 sec. 56 Fall 2017

Section 5: First Order Equations Models and Applications

A Classic Mixing Problem A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

A Classic Mixing Problem

From considering rate of increase and rate of decrease of the amount of salt at time t, we obtained the first order linear equation

$$
\frac{d A}{d t}=r_{i} \cdot c_{i}-r_{0} \frac{A}{V} \quad \Longrightarrow \quad \frac{d A}{d t}+\frac{r_{0}}{V} A=r_{i} c_{i}
$$

where r_{i} is the rate of inflow of fluid, c_{i} is the concentration of salt in the incoming fluid, r_{0} is the rate of outflow of fluid, and $V(t)$ is the volume of the mixture in the take. If the initial volume is $V(0)$, then

$$
V(t)=V(0)+\left(r_{i}-r_{o}\right) t .
$$

If we know the starting amount of salt $A(0)$, we can solve an IVP to find the amount of salt at all future times.

Solve the Mixing Problem

A tank originally contains 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped in at a rate of $5 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at the same rate. Find the amount of salt $A(t)$ in pounds at the time t. Find the concentration of the mixture in the tank at $t=5$ minutes.

We determined

$$
r_{i}=r_{0}=5 \mathrm{gal} / \mathrm{min}, \quad c_{i}=2 \mathrm{lb} / \mathrm{gal}, \quad \text { and } \quad A(0)=0
$$

This gives us the IVP

$$
\frac{d A}{d t}+\frac{5}{500} A=10, \quad A(0)=0
$$

$$
\frac{d A}{d t}+\frac{1}{100} A=10, \quad A(0)=0
$$

$1^{\text {stt }}$ orde lineer in standerd form: $P(t)=\frac{1}{100}$ Integroting factor $\mu=e^{\int P(t) d t}=e^{\int \frac{1}{100} d t}=e^{\frac{1}{100} t}$

$$
\begin{aligned}
& \frac{d}{d t}\left[e^{\frac{1}{100} t} A\right]=10 e^{\frac{1}{100} t} \\
& \int \frac{d}{d t}\left[e^{\frac{1}{100} t} A\right] d t=\int 10 e^{\frac{1}{100} t} d t \\
& e^{\frac{1}{100} t} A=10\left(\frac{1}{1 / 100}\right) e^{\frac{1}{100} t}+C
\end{aligned}
$$

$$
\begin{aligned}
e^{\frac{1}{100} t} A & =1000 e^{\frac{1}{100} t}+C \\
A & =\frac{1000 e^{\frac{1}{100} t}+C}{e^{\frac{1}{100} t}} \\
A & =1000+C e^{\frac{-1}{100} t} \\
\text { Using } A(0) & =0 \\
A(0) & =1000+C e^{0}=1000+C=0
\end{aligned}
$$

$$
C=-1000
$$

The amount of salt A is

$$
A(t)=1000-1000 e^{-\frac{1}{100} t}
$$

The concentration in the tank

$$
C_{n}=\frac{A}{V}=\frac{1000-1000 e^{\frac{-1}{100} t}}{500}
$$

@ Sminuter $e^{\frac{-1}{100} . S}$

$$
C_{n}=\frac{1000-1000 e^{\frac{100}{100}}}{500} \approx 0.10 \frac{1 b}{\mathrm{gd}}
$$

$$
r_{i} \neq r_{o}
$$

Suppose that instead, the mixture is pumped out at $10 \mathrm{gal} / \mathrm{min}$. Determine the differential equation satisfied by $A(t)$ under this new condition.

Here $V(t)=V(0)+\left(r_{i}-r_{0}\right) t=500+(s-10) t$

$$
\begin{aligned}
c_{0}= & \frac{A}{V}=\frac{A}{s 00-s t} \\
\frac{d A}{d t}+ & \frac{10}{500-s t} A=10 \\
& \frac{d A}{d t}+\frac{2}{100-t} A=10 \quad \text { For } 0<t<100
\end{aligned}
$$

A Nonlinear Modeling Problem

A population $P(t)$ of tilapia changes at a rate jointly proportional to the current population and the difference between the constant carrying capacity ${ }^{1} M$ of the environment and the current population. Determine the differential equation satsified by P.

$$
\begin{gathered}
\frac{d P}{d t} \alpha \text { Population and } M \text { minus PoPulation } \\
P-P \\
\frac{d P}{d t}=k P(M-P)
\end{gathered}
$$

${ }^{1}$ The carrying capacity is the maximum number of individuals that the environment can support due to limitation of space and resources.

Logistic Differential Equation

The equation

$$
\frac{d P}{d t}=k P(M-P), \quad k, M>0
$$

is called a logistic growth equation.
Solve this equation ${ }^{2}$ and show that for any $P(0) \neq 0, P \rightarrow M$ as $t \rightarrow \infty$.
The en is separable

$$
\begin{aligned}
& \frac{1}{P(n-P)} \frac{d P}{d t}=k \\
& \quad \int \frac{1}{P(n-P)} d P=\int k d t
\end{aligned}
$$

${ }^{2}$ The partial fraction decomposition

$$
\frac{1}{P(M-P)}=\frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right)
$$

is useful.

$$
\begin{aligned}
\int \frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right) d P & =\int k d t \\
\int\left(\frac{1}{P}+\frac{1}{M-P}\right) d P & =\int k M d t \\
\ln |P|-\ln |M-P| & =k M t+C \\
\ln \left|\frac{P}{M-P}\right| & =k M t+C \\
\left|\frac{P}{M-P}\right| & =e^{k M t+C}=e^{k n t}
\end{aligned}
$$

Let $A=e^{c}$ or $A=-e^{c}$ to chsorb on s sigh

$$
\text { * } \begin{aligned}
\frac{P}{M-P} & =A e^{k M t} \quad \text { If } P(0)=P_{0} \\
\frac{P_{0}}{M-P_{0}} & =A e^{0}=A \Rightarrow A=\frac{P_{0}}{M-P_{0}}
\end{aligned}
$$

Solve * for P

$$
\begin{aligned}
& P=A e^{k \mu t}(\mu-P)=M A e^{k \mu t}-A P e^{k \mu t} \\
& P+A P e^{k \mu t}=M A e^{k \mu t} \\
& P\left(1+A e^{k \mu t}\right)=M A e^{k \mu t}
\end{aligned}
$$

$$
\begin{gathered}
P=\frac{M A e^{k n t}}{1+A e^{k M t}} \quad \text { using } A=\frac{P_{0}}{M-P_{0}} \\
P=\frac{\frac{P_{0}}{M-P_{0}} M e^{k M t}}{1+\frac{P_{0}}{M-P_{0}} e^{k M t}} \cdot\left(\frac{M-P_{0}}{M-P_{0}}\right) \text { Clear } \\
P(t)=\frac{P_{0} M e^{k M t}}{M-P_{0}+P_{0} e^{k M t}}
\end{gathered}
$$

This is the genera solution to the logistic growth equation.

Take $t \rightarrow \infty$ to see the long time population

$$
\lim _{t \rightarrow \infty} P(t)=\lim _{t \rightarrow \infty} \frac{P_{0} M e^{k n t}}{M-P_{0}+P_{0} e^{k \mu t}}=\frac{\infty}{\infty}
$$

Use l'Hopital's rule

$$
\begin{aligned}
& \text { Hopital's rule } \\
& =\lim _{t \rightarrow \infty} \frac{P_{0} M k N e^{k M / t}}{P_{0} k M e^{k M t}} \\
& =\lim _{t \rightarrow \infty} M=M
\end{aligned}
$$

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Homogeneous Equations

We'll consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

and assume that each a_{i} is continuous and a_{n} is never zero on the interval of interest.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval l, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.
This is called the principle of superposition.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l .
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on I.

$$
\begin{aligned}
& \text { Taking de } c \text { 's to be zeno always worles. The } \\
& \text { functions are linearly dependent if at least } \\
& \text { one } c \text { is not zero. }
\end{aligned}
$$

Example: A linearly Dependent Set

The functions $f_{1}(x)=\sin ^{2} x, f_{2}(x)=\cos ^{2} x$, and $f_{3}(x)=1$ are linearly dependent on $I=(-\infty, \infty)$.

Consider $c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0$

$$
c_{1} \sin ^{2} x+c_{2} \cos ^{2} x+c_{3} \cdot 1=0
$$

Take $C_{1}=c_{2}=1, c_{3}=-1$ (not all zero)

$$
\begin{array}{r}
1 \cdot \sin ^{2} x+1 \cdot \cos ^{2} x-1 \cdot 1= \\
\left(\sin ^{2} x+\cos ^{2} x\right)-1= \\
1-1=0
\end{array}
$$

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.
consider $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all real x

$$
c_{1} \sin x+c_{2} \cos x=0
$$

If it's true for all x, it's tine if $x=0$.

$$
\begin{aligned}
& c_{1} \sin 0+c_{2} \cos 0=0 \\
& 0+c_{2}=0 \Rightarrow c_{2}=0 .
\end{aligned}
$$

It mustols, hold if $x=\pi / 2$.

$$
\begin{aligned}
& x=1 / 2 \\
& c_{1} \sin \pi / 2=0 \Rightarrow c_{1} \cdot 1=0 \Rightarrow c_{1}=0
\end{aligned}
$$

C_{1}, c_{2} must both be zeno!

Determine if the set is Linearly Dependent or $I=(\infty, \infty)$ Independent

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=0
$$

$$
\begin{gathered}
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2} \\
c_{1} x^{2}+c_{2}(4 x)+c_{3}\left(x-x^{2}\right)=0 \\
\left(c_{1}-c_{3}\right) x^{2}+\left(c_{3}+4 c_{2}\right) x=0
\end{gathered}
$$

Try $c_{1}=c_{3}=1, \quad c_{2}=\frac{-1}{4}$ Not all zero

$$
\begin{aligned}
& (1-1) x^{2}+\left(1+4\left(\frac{-1}{4}\right)\right) x=\text { Then ore } \\
& 0+(1-1) x= \\
& 0+0=0
\end{aligned}
$$

Definition of Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Determine the Wronskian of the Functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x
$$

2×2 since we have 2 functions

$$
\begin{aligned}
f_{1}^{\prime}(x)=\cos x, & f_{2}^{\prime}(x)=-\sin x \\
w\left(f_{1}, f_{2}\right)(x) & =\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right| \\
& =\sin x(-\sin x)-\cos x(\cos x \\
& =-\sin ^{2} x-\cos ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& =-\left(\sin ^{2} x+\cos ^{2} x\right) \\
& =-1
\end{aligned}
$$

The Wronstian $W\left(f_{1}, f_{2}\right)(x)=-1$ the constant function.

