September 14 Math 3260 sec. 58 Fall 2017

Section 2.2: Inverse of a Matrix

If A is an $n \times n$ matrix, we seek a matrix A^{-1} that satisfies the condition

$$A^{-1}A = AA^{-1} = I_n$$
.

If such matrix A^{-1} exists, we'll say that A is **nonsingular** (a.k.a. *invertible*). Otherwise, we'll say that A is **singular**.

Theorem $(2 \times 2 \text{ case})$

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If ad - bc = 0, then A is singular.

The quantity ad - bc is called the **determinant** of A.

Theorem: If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Example

Solve the system using a matrix inverse

$$\begin{array}{rcl}
4x_1 & + & x_2 & = & 7 \\
-2x_1 & + & 3x_2 & = & 7
\end{array}$$

Theorem

(i) If A is invertible, then A^{-1} is also invertible and

$$\left(A^{-1}\right)^{-1}=A.$$

(ii) If A and B are invertible $n \times n$ matrices, then the product AB is also invertible with

$$(AB)^{-1} = B^{-1}A^{-1}.$$

(iii) If A is invertible, then so is A^T . Moreover

$$\left(\boldsymbol{A}^{T}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{T}.$$

¹This can generalize to the product of k invertible matrices.

Elementary Matrices

Definition: An **elementary** matrix is a square matrix obtained from the identity by performing one elementary row operation.

Examples:

$$E_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{array} \right], \quad E_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{array} \right], \quad E_3 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

Action of Elementary Matrices

Let
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
, and compute the following products

$$E_1A$$
, E_2A , and E_3A .

$$E_1 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$E_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{array} \right]$$

$$E_3 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Remarks

- ► Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),
- ► Each elementary matrix is invertible where the inverse *undoes* the row operation,
- Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

$$\operatorname{rref}(A) = E_k \cdots E_2 E_1 A.$$

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_n . Moreover, if

$$rref(A) = E_k \cdots E_2 E_1 A = I_n$$
, then $A = (E_k \cdots E_2 E_1)^{-1} I_n$.

That is,

$$A^{-1} = [(E_k \cdots E_2 E_1)^{-1}]^{-1} = E_k \cdots E_2 E_1.$$

The sequence of operations that reduces A to I_n , transforms I_n into A^{-1} .

This last observation—operations that take A to I_n also take I_n to A^{-1} —gives us a method for computing an inverse!

Algorithm for finding A^{-1}

To find the inverse of a given matrix A:

- ▶ Form the $n \times 2n$ augmented matrix [A I].
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- ▶ If rref(A) is I, then $[A \ I]$ is row equivalent to $[I \ A^{-1}]$, and the inverse A^{-1} will be the last n columns of the reduced matrix.
- ▶ If rref(*A*) is NOT *I*, then *A* is not invertible.

Remarks: We don't need to know ahead of time if *A* is invertible to use this algorithm.

If A is singular, we can stop as soon as it's clear that $rref(A) \neq I$.

Examples: Find the Inverse if Possible

(a)
$$\begin{vmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 4 \end{vmatrix}$$

15 / 35

Examples: Find the Inverse if Possible

(b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$$

Solve the linear system if possible

$$x_1 + 2x_2 + 3x_3 = 3$$

 $x_2 + 4x_3 = 3$
 $5x_1 + 6x_2 = 4$

Section 2.3: Characterization of Invertible Matrices

Given an $n \times n$ matrix A, we can think of

- A matrix equation Ax = b;
- A linear system that has A as its coefficient matrix;
- ▶ A linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by $T(\mathbf{x}) = A\mathbf{x}$;
- ▶ Not to mention things like its **pivots**, its **rref**, the linear dependence/independence of its columns, blah blah blah...

Question: How is this stuff related, and how does being singular or invertible tie in?

Theorem: Suppose *A* is $n \times n$. The following are equivalent. ²

- (a) A is invertible.
- (b) A is row equivalent to I_n .
- (c) A has n pivot positions.
- (d) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (e) The columns of A are linearly independent.
- (f) The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one to one.
- (g) $A\mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^n .
- (h) The columns of A span \mathbb{R}^n .
- (i) The transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto.
- (i) There exists an $n \times n$ matrix C such that CA = I.
- (k) There exists an $n \times n$ matrix D such that AD = I.
 - (I) A^T is invertible.

²Meaning all are true or none are true.

Theorem: (An inverse matrix is unique.)

Let *A* and *B* be $n \times n$ matrices. If AB = I, then *A* and *B* are both invertible with $A^{-1} = B$ and $B^{-1} = A$.

Invertible Linear Transformations

Definition: A linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is said to be **invertible** if there exists a function $S : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ such that both

$$S(T(\mathbf{x})) = \mathbf{x}$$
 and $T(S(\mathbf{x})) = \mathbf{x}$

for every **x** in \mathbb{R}^n .

If such a function exists, we typically denote it by

$$S = T^{-1}$$
.

Theorem (Invertibility of a linear transformation and its matrix)

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation and A its standard matrix. Then T is invertible if and only if A is invertible. Moreover, if T is invertible, then

$$T^{-1}(\mathbf{x}) = A^{-1}\mathbf{x}$$

for every **x** in \mathbb{R}^n .

Example

Use the standard matrix to determine if the linear transformation is invertible. If it is invertible, characterize the inverse transformation.

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, given by $T(x_1, x_2) = (3x_1 - x_2, 4x_2)$.

Example

Suppose $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a one to one linear transformation. Can we determine whether T is onto? Why (or why not)?