Sept. 16 Math 1190 sec. 51 Fall 2016

Section 2.3: The Derivative of a Polynomial; The Derivative of e^{x}

First some notation: If $y=f(x)$, the following notation are interchangeable:

$$
f^{\prime}(x)=y^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

Leibniz Notation: $\quad \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}$
You can think of D, or $\frac{d}{d x}$ as an "operator."
It acts on a function to produce a new function-its derivative. Taking a derivative is referred to as differentiation.

Some Derivative Rules

The derivative of a constant function is zero.

$$
\frac{d}{d x} c=0
$$

The derivative of the identity function is one.

$$
\frac{d}{d x} x=1
$$

For positive integer n^{*},

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

This last one is called the power rule.

[^0]$\frac{d}{d x} c=0$,

$\frac{d}{d x} x=1$
The slogec
is zeos
at each
point

x_{0}

Evaluate Each Derivative
(a) $\frac{d}{d x}(-7)=0 \quad$ Constant
(b) $\frac{d}{d x} 3 \pi=0 \quad$ constant
(c) $\frac{d}{d x} x^{9}=9 x^{9-1}=9 x^{8} \quad$ power

More Derivative Rules

Assume f and g are differentiable functions and k is a constant.

Constant multiple rule: $\frac{d}{d x} k f(x)=k \frac{d}{d x} f(x)$

Sum rule: $\quad \frac{d}{d x}(f(x)+g(x))=\frac{d}{d x} f(x)+\frac{d}{d x} g(x)$

Difference rule: $\quad \frac{d}{d x}(f(x)-g(x))=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)$

The rules we have thus far allow us to find the derivative of any polynomial function.

Example: Evaluate Each Derivative
(a)

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{4}-3 x^{2}\right)=\frac{d}{d x} x^{4}-\frac{d}{d x}\left(3 x^{2}\right) \quad \text { Break db } \begin{array}{c}
\text { aitferene } \\
\text { den }
\end{array} \\
& =\frac{d}{d x} x^{4}-3 \frac{d}{d x} x^{2} \\
& \text { factor out } \\
& =4 x^{4-1}-3\left(2 x^{2-1}\right) \\
& =4 x^{3}-6 x
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{d}{d x}\left(2 x^{3}+3 x^{2}-12 x+1\right)= & \frac{d}{d x} 2 x^{3}+\frac{d}{d x} 3 x^{2}-\frac{d}{d x} 12 x+\frac{d}{d x} 1 \\
& =2 \frac{d}{d x} x^{3}+3 \frac{d}{d x} x^{2}-12 \frac{d}{d x} x+\frac{d}{d x} 1 \\
& =2\left(3 x^{2}\right)+3(2 x)-12 \cdot 1+0 \\
& =6 x^{2}+6 x-12 \\
& =6\left(x^{2}+x-2\right)
\end{aligned}
$$

Example
If $f(x)=2 x^{3}+3 x^{2}-12 x+1$, find all points on the graph of f at which the slope of the graph is zero.

We know that $f^{\prime}(x)=6\left(x^{2}+x-2\right)$
At the point $(c, f(c))$. The dope of the tangent line is $f^{\prime}(c)$.

So we med to solve*

$$
f^{\prime}(c)=0 \text { for } c
$$

(Horizontal lin's have slope zero)

$$
f^{\prime}(c)=6\left(c^{2}+c-2\right)=0
$$

$$
\begin{aligned}
& c^{2}+c-2=0 \\
& (c+2)(c-1)=0 \Rightarrow c=-2 \text { or } c=1
\end{aligned}
$$

we need the y-values

$$
\begin{aligned}
& f(1)=2 \cdot 1^{3}+3 \cdot 1^{2}-12 \cdot 1+1=-6 \\
& f(-2)=2(-2)^{3}+3(-2)^{2}-12(-2)+1=21
\end{aligned}
$$

The points ane

$$
(1,-6) \text { and }(-2,21)
$$

The Derivative of e^{x}
Consider $a>0$ and $a \neq 1$. Let $f(x)=a^{x}$. Analyze the limit $f^{\prime}(0)$ and $f^{\prime}(x)$

If the limit exists (it does - take mn word)
Then

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{0+h}-a^{0}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
\end{aligned}
$$

$$
f^{\prime}(0)=\lim _{n \rightarrow 0} \frac{a^{n}-1}{n}
$$

which is
some number

Okay, so

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(a^{h}-1\right) a^{x}}{h} \\
& =\left(\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}\right) a^{x} \\
& =f^{\prime}(0) a^{x}
\end{aligned}
$$

$$
a^{x+h}=a^{x} \cdot a^{h}
$$

$$
a^{x+n}-a^{x}=
$$

$$
\left(a^{n}-1\right) a^{x}
$$

So if $f(x)=a^{x}$ then

$$
f^{\prime}(x)=f^{\prime}(0) a^{x}=f^{\prime}(0) f(x)
$$

$f^{\prime}(x)$ is a constant tims a^{x} i.e. a"constant times $f(x)$

The Derivative of e^{x}

Definition: The number e is defined ${ }^{\dagger}$ by the property

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

It follows that

Theorem: $y=e^{x}$ is differentiable (at all real numbers) and

$$
\frac{d}{d x} e^{x}=e^{x}
$$

${ }^{\dagger}$ This is one of several mutually consistent ways to defined this number. Numerically, $e \approx 2.718282$.

Section 2.4: Differentiating a Product or Quotient; Higher Order Derivatives
Motivating Example: Evaluate the derivative

$$
\begin{aligned}
\frac{d}{d x}\left[x^{3}\left(2 x^{2}-6 x+17\right)\right] & =\frac{d}{d x}\left(2 x^{5}-6 x^{4}+17 x^{3}\right) \\
& =2\left(5 x^{4}\right)-6\left(4 x^{3}\right)+17\left(3 x^{2}\right) \\
& =10 x^{4}-24 x^{3}+51 x^{2}
\end{aligned}
$$

we just do the algebra first

Derivative of A Product
Now consider evaluating the derivative

$$
\frac{d}{d x}\left[\left(3 x^{5}-2 x^{2}+x\right)\left(x^{3}-2 x^{2}+x-1\right)\right]
$$

We could, in principle, do the
same here. Do the algebra first, then talk the derivative.

Fortunately, there is on alternative.

Derivative of A Product

Theorem: (Product Rule) Let f and g be differentiable functions of x. Then the product $f(x) g(x)$ is differentiable. Moreover

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

This can be stated using Leibniz notation as

$$
\frac{d}{d x}[f(x) g(x)]=\frac{d f}{d x} g(x)+f(x) \frac{d g}{d x}
$$

Example
Compute $\frac{d}{d x} x^{5}$ using the product rule with $f(x)=x^{2}$ and $g(x)=x^{3}$. Compare this with the result from the power rule on x^{5}.
$\frac{d}{d x} x^{5}=5 x^{4}$ by the power rube.

$$
\begin{aligned}
\frac{d}{d x} x^{5} & =\frac{d}{d x} x^{2} \cdot x^{3}=\left(\frac{d}{d x} x^{2}\right) x^{3}+x^{2}\left(\frac{d}{d x} x^{3}\right) \\
& =2 x \cdot x^{3}+x^{2}\left(3 x^{2}\right) \\
& =2 x^{4}+3 x^{4}=5 x^{4}
\end{aligned}
$$

as expected.

Example
Evaluate $\frac{d}{d x}\left[\left(3 x^{5}-2 x^{2}+x\right)\left(x^{3}-2 x^{2}+x-1\right)\right]$
Let $f(x)=3 x^{5}-2 x^{2}+x$

$$
\begin{aligned}
& f^{\prime}(x)=15 x^{4}-4 x+1 \\
& g(x)=x^{3}-2 x^{2}+x-1 \\
& g^{\prime}(x)=3 x^{2}-4 x+1
\end{aligned}
$$

$$
\frac{d}{d x}\left[\left(3 x^{5}-2 x^{2}+x\right)\left(x^{3}-2 x^{2}+x-1\right)\right]
$$

$$
=\left(15 x^{2}-4 x+1\right)\left(x^{3}-2 x^{2}+x-1\right)+\left(3 x^{5}-2 x^{2}+1\right)\left(3 x^{2}-4 x+1\right)
$$

Example
Evaluate $\frac{d}{d x} e^{2 x}$ using the product rule.

$$
\begin{aligned}
& e^{2 x}=e^{x} \cdot e^{x} \text { so } \\
& \frac{d}{d x} e^{2 x}=\frac{d}{d x}\left(e^{x} e^{x}\right)=\left(\frac{d}{d x} e^{x}\right) e^{x}+e^{x}\left(\frac{d}{d x} e^{x}\right) \\
&=e^{x} \cdot e^{x}+e^{x} \cdot e^{x} \\
&=e^{2 x}+e^{2 x} \\
&=2 e^{2 x}
\end{aligned}
$$

[^0]: *This rule turns out to hold for any real number n, though the proofs for more general cases require results yet to come.

