Sept. 16 Math 1190 sec. 51 Fall 2016

Section 2.3: The Derivative of a Polynomial; The Derivative of e^x

First some notation: If y = f(x), the following notation are interchangeable:

$$f'(x) = y'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_xf(x)$$

Leibniz Notation:
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$

You can think of
$$D$$
, or $\frac{d}{dx}$ as an "operator."

It acts on a function to produce a new function—its derivative. Taking a derivative is referred to as *differentiation*.

Some Derivative Rules

The derivative of a constant function is zero.

$$\frac{d}{dx}c = 0$$

The derivative of the identity function is one.

$$\frac{d}{dx}x = 1$$

For positive integer n^* ,

$$\frac{d}{dx}x^n = nx^{n-1}$$

This last one is called the **power rule**.

^{*}This rule turns out to hold for any real number *n*, though the proofs for more general cases require results yet to come.

Evaluate Each Derivative

(a)
$$\frac{d}{dx}(-7) = 0$$
 Constant

(b)
$$\frac{d}{dx} 3\pi = 0$$
 Construct

(c)
$$\frac{d}{dx}x^9 = \Im x^{9-1} = \Im x^8$$
 power with

More Derivative Rules

Assume f and g are differentiable functions and k is a constant.

Constant multiple rule:
$$\frac{d}{dx}kf(x) = k\frac{d}{dx}f(x)$$

Sum rule:
$$\frac{d}{dx}(f(x)+g(x)) = \frac{d}{dx}f(x)+\frac{d}{dx}g(x)$$

Difference rule:
$$\frac{d}{dx}(f(x)-g(x)) = \frac{d}{dx}f(x)-\frac{d}{dx}g(x)$$

The rules we have thus far allow us to find the derivative of any polynomial function.

Example: Evaluate Each Derivative

~

(a)
$$\frac{d}{dx}(x^4-3x^2) = \frac{d}{dx}x^4 - \frac{d}{dx}(3x^2)$$
 Break of
 $= \frac{d}{dx}x^4 - 3\frac{d}{dx}x^2$ Greak of
 $= \frac{d}{dx}x^4 - 3\frac{d}{dx}x^2$ for out
 $= 4x^{4-1} - 3(2x^{2-1})$ or power
 $= 4x^3 - 6x$

(b) $\frac{d}{dx}(2x^3+3x^2-12x+1) = \frac{d}{dx}(2x^3+\frac{d}{dx}) + \frac{d}{dx}(2x^2+\frac{d}{dx}) + \frac{d}{dx}(2x+\frac{d}{dx}) + \frac{d}{dx}(2x+\frac{d}$

$$= 2 \frac{d}{dx} \times^{3} + 3 \frac{d}{dx} \times^{2} - 12 \frac{d}{dx} \times + \frac{d}{dx} |$$

 $= 2(3x^2) + 3(2x) - 12 \cdot 1 + 0$

- = 6x2+6x-12
 - $= 6(x^2 + x 2)$

If $f(x) = 2x^3 + 3x^2 - 12x + 1$, find all points on the graph of *f* at which the slope of the graph is zero.

We know that
$$f'(x) = 6(x^2 + x - z)$$

At the point $(c_3 f(c_3))$. The dope
of the tangent line is $f'(c_3)$.
So we need to solve #
 $f'(c_3 = 0$ for C
(Horizontal line's have slope zero)
 $f'(c_3) = 6(c_2^2 + (-z_3)) = 0$

 $c^{2} + (-2 = 0)$ ((+2)(2-1)=0 =) C=-2 or (=1

We need the y-values $f(1) = 2 \cdot |^{3} + 3 \cdot |^{2} - |2 \cdot |+| = -6$ $f(-2) = 2(-2)^{3} + 3(-2)^{2} - |2(-2) + |= 2|$ The points are (1, -6) and (-2, 2|)

The Derivative of *e*^{*x*}

Consider a > 0 and $a \neq 1$. Let $f(x) = a^x$. Analyze the limit f'(0) and f'(x)

If the Dimit exists (it does - take me
word)
Then

$$f'(o) = \lim_{h \to 0} \frac{f(o+h) - f(o)}{h}$$

 $= \lim_{h \to 0} \frac{a^{0+h} - a^{\circ}}{h}$
 $f'(o) = \lim_{h \to 0} \frac{a^{n} - 1}{h}$
 $\lim_{h \to 0} \frac{a^{h} - 1}{h}$
 $\lim_{h \to 0} \frac{a^{h} - 1}{h}$
 $\lim_{h \to 0} \lim_{h \to 0} \frac{a^{n} - 1}{h}$

 $a^{x+h} = a \cdot a^{h}$ $a^{x+h} = a^{x} = (a^{h} - 1) a^{x}$

So if $f(x) = a^{x}$ then $f'(x) = f'(a) a^{x} = f'(a) f(x)$ $f'(x) is a "constant times a^{x} "'$ i.e. a "constant times f(x) "

The Derivative of *e*^x

Definition: The number e is defined[†] by the property

$$\lim_{h\to 0}\frac{e^h-1}{h}=1.$$

It follows that

Theorem: $y = e^x$ is differentiable (at all real numbers) and

$$\frac{d}{dx}e^{x}=e^{x}.$$

[†]This is one of several mutually consistent ways to defined this number. Numerically, $e \approx 2.718282$.

Section 2.4: Differentiating a Product or Quotient; Higher Order Derivatives

Motivating Example: Evaluate the derivative

$$\frac{d}{dx}[x^{3}(2x^{2}-6x+17)] = \frac{d}{dx}\left(2x^{5}-6x^{2}+17x^{3}\right)$$

$$= 2\left(5x^{4}\right)-6\left(4x^{3}\right)+17\left(3x^{2}\right)$$

$$= 10x^{4}-24x^{3}+51x^{2}$$
we just dother algebra first

Derivative of A Product

Now consider evaluating the derivative

$$\frac{d}{dx}[(3x^5-2x^2+x)(x^3-2x^2+x-1)]$$
We could, in principle, do the
Same here. Do the algebra first
then take the derivative,
Fortunately, there is on
alternative,

Derivative of A Product

Theorem: (Product Rule) Let *f* and *g* be differentiable functions of *x*. Then the product f(x)g(x) is differentiable. Moreover

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x).$$

This can be stated using Leibniz notation as

$$\frac{d}{dx}[f(x)g(x)] = \frac{df}{dx}g(x) + f(x)\frac{dg}{dx}$$

Compute $\frac{d}{dx}x^5$ using the product rule with $f(x) = x^2$ and $g(x) = x^3$. Compare this with the result from the power rule on x^5 .

$$\frac{d}{dx} x^{5} = 5x^{4} \quad b_{5} \quad He \text{ power rule}$$

$$\frac{d}{dx} x^{5} = \frac{d}{dx} x^{2} \cdot x^{3} = \left(\frac{d}{dx} x^{2}\right) x^{3} + x^{2} \left(\frac{d}{dx} x^{3}\right)$$

$$= 2x \cdot x^{3} + x^{2} (3x^{2})$$

$$= 7x^{4} + 3x^{4} = 5x^{4}$$
as expected.

Evaluate $\frac{d}{dx}[(3x^5-2x^2+x)(x^3-2x^2+x-1)]$ Let $f(x) = 3x^{5} - 2x^{2} + x$ f'(x) = 15x' - 4x + 1 $S(x) = x^3 - 2x^2 + x - 1$ $g'(x) = 3x^2 - 4x + 1$

 $\frac{d}{dx} \left[(3x^{5} - 2x^{2} + x) (x^{3} - 2x^{2} + x - 1) \right]$

 $= (15x^{2}-4x+1)(x^{3}-2x^{2}+x-1) + (3x^{5}-2x^{2}+1)(3x^{2}-4x+1)$

Evaluate $\frac{d}{dx}e^{2x}$ using the product rule.

 $C = C = S_0$ $\frac{d}{dx} \frac{d^2}{dx} = \frac{d}{dx} \begin{pmatrix} e & e \\ e & e \end{pmatrix} = \begin{pmatrix} d & e \\ dx & e \end{pmatrix} \begin{pmatrix} e & e \\ e & e \end{pmatrix} \begin{pmatrix} e & e \\ dx & e \end{pmatrix} \begin{pmatrix} e & e \\ dx & e \end{pmatrix}$ $= \overset{\times}{e} \overset{$ $= \begin{array}{c} 2 \times & 2 \times \\ = \begin{array}{c} 0 & + \end{array}$ $= Q \rho^{Z \times}$