September 16 Math 2306 sec 51 Fall 2015

Section 4.1 Some Theory of Linear Equations

Definition of Wronskian Let f_1, f_2, \ldots, f_n posses at least n-1 continuous derivatives on an interval I. The **Wronskian** of this set of functions is the determinant

$$W(f_1, f_2, \dots, f_n)(x) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}.$$

Determine the Wronskian of the Functions

$$f_1(x) = xe^x$$
, $f_2(x) = e^x$
 $f_1'(x) = e^x + x e^x$, $f_2'(x) = e^x$

$$W(f_{1},f_{2})(x) = \begin{vmatrix} xe^{x} & e^{x} \\ e^{x} + xe^{x} & e^{x} \end{vmatrix}$$

$$= xe^{2x} - \left(e^{x} + xe^{2x}\right)$$

$$= \chi e^{2\chi} - e^{2\chi} - \chi e^{2\chi} = -e^{2\chi}$$

An Observation

The set $\{\sin x, \cos x\}$ is linearly independent on $(-\infty, \infty)$ and we found that

$$W(\sin x,\cos x)(x)=-1.$$

The set $\{x^2, 4x, x-x^2\}$ is linearly dependent on $(-\infty, \infty)$ and we found that

$$W(x^2, 4x, x - x^2)(x) = 0.$$

4 / 45

Theorem (a test for linear independence)

Let f_1, f_2, \ldots, f_n be n-1 times continuously differentiable on an interval I. If there exists x_0 in I such that $W(f_1, f_2, \ldots, f_n)(x_0) \neq 0$, then the functions are **linearly independent** on I.

If $y_1, y_2, ..., y_n$ are n solutions of the linear homogeneous n^{th} order equation on an interval I, then the solutions are **linearly independent** on I if and only if $W(y_1, y_2, ..., y_n)(x) \neq 0$ for I each X in I.

¹For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

Determine if the functions are linearly dependent or independent:

$$y_{1} = e^{x}, \quad y_{2} = e^{-2x} \quad I = (-\infty, \infty)$$

$$y_{1} = e^{x}, \quad y_{2} = e^{-2x} \quad I = (-\infty, \infty)$$

$$y_{2} = e^{x}, \quad y_{3} = e^{x}, \quad y_{4} = e^{x}, \quad y_{2} = e^{x}, \quad y_{3} = e^{x}, \quad y_{4} = e^{x}, \quad y_{4} = e^{x}, \quad y_{5} =$$

$$W(c, e^{2x})(x) = -3e^{-x} \neq 0$$
 for all x

Here yily are linearly independent.

Fundamental Solution Set

We're still considering this equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

with the assumptions $a_n(x) \neq 0$ and $a_i(x)$ are continuous on I.

Definition: A set of functions $y_1, y_2, ..., y_n$ is a **fundamental solution** set of the n^{th} order homogeneous equation provided they

- (i) are solutions of the equation,
- (ii) there are *n* of them, and
- (iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of n^{th} order Linear Homogeneous Equation

Let $y_1, y_2, ..., y_n$ be a fundamental solution set of the n^{th} order linear homogeneous equation. Then the **general solution** of the equation is

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x),$$

where c_1, c_2, \ldots, c_n are arbitrary constants.

9 / 45

Example

Verify that $y_1 = e^x$ and $y_2 = e^{-x}$ form a fundamental solution set of the ODE

$$y'' - y = 0$$
 on $(-\infty, \infty)$,

and determine the general solution.

The egn is 2nd order; there are 2 functions, so the condition (ii) is satisfied.

10 / 45

$$y_{2}(x) = e^{x}$$
 $y_{1}(x) = -e^{x}$ $y_{2}''(x) = e^{x}$
 $y_{2}'' - y_{2} = e^{x} - e^{x} = 0$ as one of required.

Both y, and by solve the ODE, so condition (i) is satisfied.

Check for linear independence:

$$W(y_{1}, y_{2})(x) = \begin{vmatrix} e^{x} & e^{-x} \\ e^{x} & -e^{x} \end{vmatrix} : e(-e^{x}) - e(e^{x}) = 0$$

$$= -1 - 1 = -2 \neq 0$$

Since W(5, yz)(x) = 0, y, and yz are linearly independent. Condition (iii) is satisfied.

Mence y, yr form a fordomental solution set.

The general solution is y(x)= C,y,(x) + (2 y, (x)

Consider
$$x^2y'' - 4xy' + 6y = 0$$
 for $x > 0$
 3^{n_x} order equation

Determine which if any of the following sets of functions is a fundamental solution set.

(a)
$$y_1 = 2x^2$$
, $y_2 = x^2 \leftarrow \text{rot possible}$, linearly dependent
 $y_1(x) - 2y_2(x) = 0$ for all $x > 0$

(b)
$$y_1 = x^2$$
, $y_2 = x^{-2} \leftarrow y_2$ doesn't solve the DE (see below)

(c)
$$y_1 = x^3$$
, $y_2 = x^2$

(d)
$$y_1 = x^2$$
, $y_2 = x^3$, $y_3 = x^{-2} \leftarrow not$ possible, too many functions

Chuck option (b)
$$y_{2}(x) = x^{2}, \quad y_{2}(x) = -2x^{3}, \quad y_{3}(x) = 6x^{4}$$

$$x^{2}y_{2}(x) = -2x^{2}, \quad y_{3}(x) = -2x^{3}, \quad y_{3}(x) = 6x^{4}$$

$$x^{2}y_{2}(x) = -4xy_{3}(x) + 6y_{2} = x^{2}(6x^{4}) - 4x(-2x^{3}) + 6(x^{2})$$

$$= 6x^{2} + 8x^{2} + 6x^{2} = 20x^{2} \neq 0$$

$$x^{2}y'' - 4xy' + 6y' = x^{2}(6x) - 4x(3x^{2}) + 6x^{3}$$

$$= 6x^{3} - 12x^{3} + 6x^{3} = 0$$

$$x^{2} y_{2}^{1} - 4x y_{2}^{1} + 6y_{2} = x^{2}(2) - 4x (2x) + 6x^{2}$$

$$= 2x^{2} - 8x^{2} + 6x^{2} = 0$$

Both functions in (c) solve the ODE.

Check for In. independence w/ Wronskian

$$W(y_{1},y_{1})(x) = \begin{vmatrix} x^{3} & x^{2} \\ 3x^{2} & 2x \end{vmatrix} = x^{3}(2x) - 3x^{3}(x^{2})$$

$$= 2x^{4} - 3x^{3} = -x^{4} \neq 0$$

The functions in option (c) are linearly independent.

Hence option (c) works,

{ x3, x2} is a fundamental

Solution set.

Nonhomogeneous Equations

Now we will consider the equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

where g is not the zero function. We'll continue to assume that a_n doesn't vanish and that a_i and g are continuous.

The associated homogeneous equation is

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0.$$

Write the associated homogeneous equation

(a)
$$x^3y'''-2x^2y''+3xy'+17y=e^{2x}$$

$$x^{3}y''' - 2x^{2}y'' + 3xy' + 17y = 0$$

(b)
$$\frac{d^2y}{dx^2} + 14\frac{dy}{dx} = \cos\left(\frac{\pi x}{2}\right)$$

$$\frac{d^2y}{dx^2} + 14\frac{dy}{dx} = 0$$

Theorem: General Solution of Nonhomogeneous Equation

Let y_p be any solution of the nonhomogeneous equation, and let y_1 , y_2, \ldots, y_n be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

$$y = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x) + y_p(x)$$

where c_1, c_2, \ldots, c_n are arbitrary constants.

Note the form of the solution $y_c + y_p!$ (complementary plus particular)

Another Superposition Principle (for nonhomogeneous eqns.)

Let $y_{p_1}, y_{p_2}, ..., y_{p_k}$ be k particular solutions to the nonhomogeneous linear equations

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g_i(x)$$

for i = 1, ..., k. Assume the domain of definition for all k equations is a common interval I.

Then

$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$

is a particular solution of the nonhomogeneous equation

$$a_n(x)\frac{d^ny}{dx^n} + \cdots + a_0(x)y = g_1(x) + g_2(x) + \cdots + g_k(x).$$

Example $x^2y'' - 4xy' + 6y = 36 - 14x$

(a) Verify that

$$y_{p_1} = 6$$
 solves $x^2y'' - 4xy' + 6y = 36$.
 $y_{p_1}'' = 0$ $x^2y_{p_1}'' - 4xy_{p_1}' + 6y_{p_1}'' = 36$
 $y_{p_1}'' = 0$ $y^2(0) + 6(6) \stackrel{?}{=} 36$
 $y_{p_1}'' = 0$ $y_{p_1}'' = 0$

so you does solve this egn.

Example $x^2y'' - 4xy' + 6y = 36 - 14x$

(b) Verify that

$$y_{p_2} = -7x \quad \text{solves} \quad x^2 y'' - 4xy' + 6y = -14x.$$

$$y_{p_1} = -7 \quad x^2 y_{p_2} - 4xy' + 6y = -14x.$$

$$y_{p_2} = -14x.$$

So you solver the egn.

Example $x^2y'' - 4xy' + 6y = 36 - 14x$

(c) Recall that $y_1 = x^2$ and $y_2 = x^3$ is a fundamental solution set of

$$x^2y'' - 4xy' + 6y = 0.$$

Use this along with results (a) and (b) to write the general solution of $x^2y'' - 4xy' + 6y = 36 - 14x$.