September 16 Math 2306 sec 51 Fall 2015

Section 4.1 Some Theory of Linear Equations

Definition of Wronskian Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right| .
$$

Determine the Wronskian of the Functions

$$
\begin{gathered}
f_{1}(x)=x e^{x}, \quad f_{2}(x)=e^{x} \\
f_{1}^{\prime}(x)=e^{x}+x e^{x}, \quad f_{2}^{\prime}(x)=e^{x} \\
W\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{cc}
x e^{x} & e^{x} \\
e^{x}+x e^{x} & e^{x}
\end{array}\right| \\
=x e^{x}\left(e^{x}\right)-\left(e^{x}+x e^{x}\right) e^{x}
\end{gathered}
$$

$$
\begin{aligned}
& =x e^{2 x}-\left(e^{2 x}+x e^{2 x}\right) \\
& =x e^{2 x}-e^{2 x}-x e^{2 x}=-e^{2 x}
\end{aligned}
$$

An Observation

The set $\{\sin x, \cos x\}$ is linearly independent on $(-\infty, \infty)$ and we found that

$$
W(\sin x, \cos x)(x)=-1
$$

The set $\left\{x^{2}, 4 x, x-x^{2}\right\}$ is linearly dependent on $(-\infty, \infty)$ and we found that

$$
W\left(x^{2}, 4 x, x-x^{2}\right)(x)=0
$$

Theorem (a test for linear independence)

Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on I.

If $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the linear homogeneous $n^{\text {th }}$ order equation on an interval I, then the solutions are linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(x) \neq 0$ for 1 each x in I.

[^0]Determine if the functions are linearly dependent or independent:

$$
\begin{array}{cl}
y_{1}=e^{x}, \quad y_{2}=e^{-2 x} \quad I=(-\infty, \infty) & y_{1}^{\prime}=e^{x} \\
\text { Use the wronrkion: } & y_{2}^{\prime}=-2 e^{-2 x}
\end{array}
$$

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{cc}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right|=e^{x}\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right) \\
& =-2 e^{-x}-e^{-x}=-3 e^{-x}
\end{aligned}
$$

$\left.W\left(c^{x}\right) e^{-2 x}\right)(x)=-3 e^{-x} \neq 0$ for all x

Hence y_{1}, y_{2} are linearly independent.

Fundamental Solution Set

We're still considering this equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

with the assumptions $a_{n}(x) \neq 0$ and $a_{i}(x)$ are continuous on I.

Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=e^{x}$ and $y_{2}=e^{-x}$ form a fundamental solution set of the ODE

$$
y^{\prime \prime}-y=0 \quad \text { on } \quad(-\infty, \infty)
$$

and determine the general solution.
The eqn is $2^{\text {nd }}$ order; there are 2 functions, so the condition (ii) is satisfied.

Verify they solve the ode.

$$
\begin{aligned}
y_{1}=e^{x}, y_{1}^{\prime}(x) & =e^{x}, y_{1}^{\prime \prime}(x)=e^{x} \\
y_{1}^{\prime \prime}-y_{1} & =e^{x}-e^{x}=0 \text { as required. }
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}(x)=e^{-x}, y_{2}^{\prime}(x)=-e^{-x}, y_{2}^{\prime \prime}(x)=e^{-x} \\
& y_{2}^{\prime \prime}-y_{2}=e^{-x}-e^{-x}=0 \quad \text { ascin as }
\end{aligned}
$$

Both y, and b_{2} solve the ODE, so condition (i) is satisfied.

Check for linemen independence:

$$
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|: \begin{aligned}
& e^{x}\left(-e^{-x}\right)-e^{x}\left(e^{-x}\right)= \\
& =-1-1=-2 \neq 0
\end{aligned}
$$

Since $W\left(y_{1}, y_{2}\right)(x) \neq 0, y_{1}$ and y_{2} are linearly independent. Condition (iii) is satisfied.

Hence y_{1}, y_{2} form a fundamental solution set.

The genera solution is $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$

$$
\text { ie. } \quad y(x)=c_{1} e^{x}+c_{2} e^{-x}
$$

Consider $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ for $x>0$

$$
2^{\text {nd }} \text { order equation }
$$

Determine which if any of the following sets of functions is a fundamental solution set.
(b) $y_{1}=x^{2}, \quad y_{2}=x^{-2} \leftarrow y_{2}$ doesn't solve the DE (see below)
(c) $y_{1}=x^{3}, \quad y_{2}=x^{2}$
(d) $y_{1}=x^{2}, \quad y_{2}=x^{3}, \quad y_{3}=x^{-2} \leftarrow$ not possible, too mans functions

Chuck option (b)

$$
\begin{aligned}
& y_{2}(x)=x^{-2}, y_{2}^{\prime}(x)=-2 x^{-3}, y_{2}^{\prime \prime}(x)=6 x^{-4} \\
& x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2}=x^{2}\left(6 x^{-4}\right)-4 x\left(-2 x^{-3}\right)+6\left(x^{-2}\right) \\
&=6 x^{-2}+8 x^{-2}+6 x^{-2}=20 x^{-2} \neq 0{ }^{\text {ar }} \text { kulun }
\end{aligned}
$$

Check option (c)

$$
\begin{aligned}
& y_{1}=x^{3}, y_{1}^{\prime}=3 x^{2}, y_{1}^{\prime \prime}=6 x \\
& x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1}=x^{2}(6 x)-4 x\left(3 x^{2}\right)+6 x^{3} \\
&=6 x^{3}-12 x^{3}+6 x^{3}=0
\end{aligned}
$$

$$
\begin{aligned}
y_{2}=x^{2}, y_{2}^{\prime}=2 x, y_{2}^{\prime \prime} & =2 \\
x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2} & =x^{2}(2)-4 x(2 x)+6 x^{2} \\
& =2 x^{2}-8 x^{2}+6 x^{2}=0
\end{aligned}
$$

Both functions in (c) solve the ODE.
Check for lin. independence w/ Wronskion

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
x^{3} & x^{2} \\
3 x^{2} & 2 x
\end{array}\right|= & x^{3}(2 x)-3 x^{2}\left(x^{2}\right) \\
& =2 x^{4}-3 x^{4}=-x^{4} \neq 0
\end{aligned}
$$

The functions in option (c) are linearly independent.

Hence option (c) works, $\left\{x^{3}, x^{2}\right\}$ is a fundamental solution set.

Nonhomogeneous Equations

Now we will consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where g is not the zero function. We'll continue to assume that a_{n} doesn't vanish and that a_{i} and g are continuous.

The associated homogeneous equation is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Write the associated homogeneous equation
(a) $x^{3} y^{\prime \prime \prime}-2 x^{2} y^{\prime \prime}+3 x y^{\prime}+17 y=e^{2 x}$

$$
x^{3} y^{\prime \prime \prime}-2 x^{2} y^{\prime \prime}+3 x y^{\prime}+17 y=0
$$

(b) $\frac{d^{2} y}{d x^{2}}+14 \frac{d y}{d x}=\cos \left(\frac{\pi x}{2}\right)$

$$
\frac{d^{2} y}{d x^{2}}+14 \frac{d y}{d x}=0
$$

Theorem: General Solution of Nonhomogeneous Equation

Let y_{p} be any solution of the nonhomogeneous equation, and let y_{1}, y_{2}, \ldots, y_{n} be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Note the form of the solution $y_{c}+y_{p}$!
(complementary plus particular)

Another Superposition Principle (for nonhomogeneous eqns.)
 Let $y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions to the nonhomogeneous linear equations

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{i}(x)
$$

for $i=1, \ldots, k$. Assume the domain of definition for all k equations is a common interval I.

Then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}
$$

is a particular solution of the nonhomogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x) .
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(a) Verify that

$$
\begin{array}{rlrl}
y_{p_{1}}=6 & \text { solves } & x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y & =36 . \\
y_{p_{1}}^{\prime}=0 & x^{2} y_{p_{1}}^{\prime \prime}-4 x y_{p_{1}}^{\prime}+6 y_{p_{1}} & \stackrel{?}{=} 36 \\
y_{p_{1}}^{\prime \prime}=0 & x^{2}(0)-4 x(0)+6(6) & \stackrel{?}{=} 36 \\
36 & =36
\end{array}
$$

so $y_{p_{1}}$ does solve this eqn.

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Verify that

$$
\begin{array}{ll}
y_{p_{2}}=-7 x & \text { solves } \\
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x . \\
y_{p_{2}}^{\prime}=-7 & \\
y_{p_{2}}^{\prime \prime}=0 & x^{2} y_{p_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}}
\end{array} \stackrel{?}{=}-14 x .
$$

So yer solves the eqn.

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Recall that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.

By principle of superposition $y_{p}=y_{p_{1}}+y_{p_{2}}$
so $y_{p}=6-7 x$
Ass. $\quad y_{c}=c_{1} y_{1}+c_{2} y_{2}=c_{1} x^{2}+c_{2} x^{3}$
The genera solution for the nonhonogenear eqn is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

[^0]: ${ }^{1}$ For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

