Sept 17 Math 2306 sec. 53 Fall 2018

Section 6: Linear Equations Theory and Terminology

Definition of Wronskian Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right| .
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Determine the Wronskian of the Functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x
$$

We computed the Wronskian

$$
W\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{lr}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right|=-1
$$

Determine the Wronskian of the Functions

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

3 functions $\rightarrow 3 \times 3$ matrix

$$
\begin{aligned}
& W\left(f_{1}, f_{2}, f_{3}\right)(x)=\left|\begin{array}{ccc}
x^{2} & 4 x & x-x^{2} \\
2 x & 4 & 1-2 x \\
2 & 0 & -2
\end{array}\right| \\
& =x^{2}\left|\begin{array}{cc}
4 & 1-2 x \\
0 & -2
\end{array}\right|-4 x\left|\begin{array}{cc}
2 x & 1-2 x \\
2 & -2
\end{array}\right|+\left(x-x^{2}\right)\left|\begin{array}{cc}
2 x & 4 \\
2 & 0
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}(4 \cdot(-2)-0 \cdot(1-2 x))-4 x(2 x(-2)-2(1-2 x))+\left(x-x^{2}\right)(2 x \cdot 0-2 \cdot 4) \\
& =x^{2}(-8)-4 x(-4 x-2+4 x)+\left(x-x^{2}\right)(-8) \\
& =-8 x^{2}+8 x-8 x+8 x^{2} \\
& =0 \\
& \quad w\left(f_{1}, f_{2}, f_{3}\right)(x)=0
\end{aligned}
$$

Theorem (a test for linear independence)

Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on I.

$$
\text { functions are lin. dependent if } W(x)=0 \text { for cel } x \text { in I }
$$

If $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the linear homogeneous $n^{\text {th }}$ order equation on an interval I, then the solutions are linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(x) \neq 0$ for 1 each x in I.

[^0]Determine if the functions are linearly dependent or independent:

$$
y_{1}=e^{x}, \quad y_{2}=e^{-2 x} \quad I=(-\infty, \infty)
$$

we con use the Wronstion

$$
\begin{gathered}
w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right|=e\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right) \\
=-2 e^{-x}-e^{-x}=-3 e^{-x} \\
W\left(y_{1}, y_{2}\right)(x)=-3 e^{-x} \quad \text { Nonzero }
\end{gathered}
$$

The functions are linearly independent.

Fundamental Solution Set

We're still considering this equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

with the assumptions $a_{n}(x) \neq 0$ and $a_{i}(x)$ are continuous on I.

Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ form a fundamental solution set of the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \quad \text { on } \quad(0, \infty)
$$

and determine the general solution.
2 functions and $2^{\text {nd }}$ order equation (right $\#$ of functions)

Verity they are solutions:

$$
\begin{aligned}
& y_{1}=x^{2} \\
& y_{1}^{\prime}=2 x \quad \text { substitute } \\
& y_{1}^{\prime \prime}=2
\end{aligned}
$$

$$
x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1}=
$$

$$
\begin{aligned}
x^{2}(2)-4 x(2 x)+6\left(x^{2}\right) & = \\
2 x^{2}-8 x^{2}+6 x^{2} & = \\
0 & =0
\end{aligned}
$$

y, solves the ODE

$$
\begin{array}{lrl}
y_{2}=x^{3} & x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2} & = \\
y_{2}^{\prime}=3 x^{2} & \text { substitute } & x^{2}(6 x)-4 x\left(3 x^{2}\right)+6 x^{3}=0 \\
y_{2}^{\prime \prime}=6 x & 6 x^{3}-12 x^{3}+6 x^{3}= \\
0 & =0
\end{array}
$$

Yo solus the ODE
Finally, well show they are linearly independent.
Using the Wronskion:

$$
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{ll}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
$$

$$
\begin{aligned}
& =x^{2}\left(3 x^{2}\right)-2 x\left(x^{3}\right) \\
& =3 x^{4}-2 x^{4}=x^{4}
\end{aligned}
$$

$W\left(y_{1}, y_{2}\right)(x)=x^{4} \neq 0$ they are independent!

The general solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& y=c_{1} x^{2}+c_{2} x^{3}
\end{aligned}
$$

[^0]: ${ }^{1}$ For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

