September 18 Math 2306 sec 51 Fall 2015
Section 4.1 Some Theory of Linear Equations
Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=-5
$$

From last time, we found the general solution to be

$$
\begin{aligned}
& y=c_{1} x^{2}+c_{2} x^{3}+6-7 x \\
& y^{\prime}: 2 c_{1} x+3 c_{2} x^{2}-7 \\
& y(1)=c_{1}(1)^{2}+c_{2}(1)^{3}+6-7(1)=0 \\
& c_{1}+c_{2}-1=0 \Rightarrow c_{1}+c_{2}=1 \\
& y^{\prime}(1)=2 c_{1}(1)+3 c_{2}(1)^{2}-7=-5 \\
& 2 c_{1}+3 c_{2}-7=-5 \Rightarrow 2 c_{1}+3 c_{2}=2
\end{aligned}
$$

$$
\begin{aligned}
& C_{1}+C_{2}=1 \quad \Rightarrow \quad-2 C_{1}-2 C_{2}=-2 \\
& 2 C_{1}+3 C_{2}=2 \quad 2 C_{1}+3 C_{2}=2 \\
& C_{2}=0
\end{aligned}
$$

$$
c_{1}+0=1 \Rightarrow \quad c_{1}=1
$$

So the solution to the IVP is

$$
y=x^{2}+6-7 x
$$

Section 4.2: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Recall that every fundmantal solution set will consist of two linearly independent solutions y_{1} and y_{2}, and the general solution will have the form

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Suppose we happen to know one solution $y_{1}(x)$. Reduction of order is a method for finding a second linearly independent solution $y_{2}(x)$ that starts with the assumption that

$$
y_{2}(x)=u(x) y_{1}(x)
$$

for some function $u(x)$. The method involves finding the function u.

Example
Verify that $y_{1}=e^{-x}$ is a solution of $y^{\prime \prime}-y=0$. Then find a second solution y_{2} of the form

$$
y_{2}(x)=u(x) y_{1}(x)=e^{-x} u(x) .
$$

Confirm that the pair y_{1}, y_{2} is linearly independent.
Verify y_{1} Solver the D.E.: $y_{1}=e^{-x}, y_{1}^{\prime}=-e^{-x}, y_{1}^{\prime \prime}=e^{-x}$ $y_{1}^{\prime \prime}-y_{1}=e^{-x}-e^{-x}=0 \Rightarrow y_{1}$ solves the equation.

Set $y_{2}(x)=e^{-x} u(x)$. To sub it into the $D E$, we need $y_{2}^{\prime \prime}(x)$

$$
\begin{aligned}
y_{2}(x) & =e^{-x} u(x) \\
y_{2}^{\prime}(x) & =e^{-x} u^{\prime}(x)-e^{-x} u(x) \\
y_{2}^{\prime \prime}(x) & =e^{-x} u^{\prime \prime}(x)-e^{-x} u^{\prime}(x)-e^{-x} u^{\prime}(x)+e^{-x} u(x) \\
& =e^{-x} u^{\prime \prime}(x)-2 e^{-x} u^{\prime}(x)+e^{-x} u(x)
\end{aligned}
$$

Need $y_{2}{ }^{\prime \prime}-y_{2}=0 \Rightarrow$

$$
\begin{array}{r}
e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}+e^{-x} u-e^{-x} u=0 \\
-x u^{\prime \prime}-2 e^{-x} u^{\prime}=0 \Rightarrow \quad x
\end{array}
$$

$$
\Rightarrow \quad u^{\prime \prime}-2 u^{\prime}=0 \quad \text { (Dirge ont } e^{-x} \text {) }
$$

This is $1^{\text {st }}$ order linear in u^{\prime}. Let $w=u^{\prime}$.
Then $w^{\prime}=u^{\prime \prime}$ so

$$
\begin{gathered}
w^{\prime}-2 w=0 \Rightarrow \frac{d w}{d x}=2 w \\
\frac{1}{w} \frac{d w}{d x}=2 \Rightarrow \frac{1}{w} \frac{d w}{d x} d x=2 d x \\
\int \frac{1}{w} d w=\int 2 d x \\
\ln w=2 x \Rightarrow w=e^{2 x}
\end{gathered}
$$

Since $w=u^{\prime}, \quad u=\int w d x$

So

$$
u=\int e^{2 x} d x=\frac{1}{2} e^{2 x}
$$

From $y_{2}(x)=u(x) y_{1}(x)=e^{-x} u(x)$, we find $y_{2}(x)=e^{-x}\left(\frac{1}{2} e^{2 x}\right)=\frac{1}{2} e^{x}$

Now we con verify that y_{1} and y_{2} are linearly indepen dent.

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{cc}
e^{-x} & \frac{1}{2} e^{x} \\
-e^{-x} & \frac{1}{2} e^{x}
\end{array}\right| \\
& =e^{-x}\left(\frac{1}{2} e^{x}\right)-\left(-e^{-x}\right)\left(\frac{1}{2} e^{x}\right)=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

Since $w\left(y_{1}, y_{2}\right)(x)=1 \neq 0, \quad y_{1}$ and y_{2} are lively independent.
The general solution is $y=c_{1} y_{1}+c_{2} y_{2}$. We con absorb the $\frac{1}{2}$ into c_{2} and take $y_{2}=e^{x}$.

Generalization
Consider the equation in standard form with one known solution. Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-- \text { is known. }
$$

Set $y_{2}(x)=u(x) y_{1}(x)$

$$
\begin{aligned}
& y_{2}^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime} \\
& y_{2}^{\prime \prime}=u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
& y_{2}^{\prime \prime}=u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ill }{ }^{\text {ce }} \text { de day. } \\
& \text { cont ir or }
\end{aligned}
$$

