September 18 Math 2306 sec 54 Fall 2015

Section 4.1 Some Theory of Linear Equations

General Solution of Nonhomogeneous Equation

Let y_p be any solution of the nonhomogeneous equation, and let y_1 , y_2, \ldots, y_n be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

$$y = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x) + y_p(x)$$

where c_1, c_2, \ldots, c_n are arbitrary constants.

Superposition Principle for Nonhomogeneous Equations

Let $y_{p_1}, y_{p_2}, ..., y_{p_k}$ be k particular solutions to the nonhomogeneous linear equations

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g_i(x)$$

for i = 1, ..., k. Assume the domain of definition for all k equations is a common interval I.

Then

$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$

is a particular solution of the nonhomogeneous equation

$$a_n(x)\frac{d^ny}{dx^n} + \cdots + a_0(x)y = g_1(x) + g_2(x) + \cdots + g_k(x).$$

Example $x^2y'' - 4xy' + 6y = 36 - 14x$

(a) Verify that

$$y_{p_1} = 6$$
 solves $x^2y'' - 4xy' + 6y = 36$.
 $y_{p_1}' = 0$ $y_{p_1}'' =$

Example $x^2y'' - 4xy' + 6y = 36 - 14x$

(b) Verify that

$$y_{p_2} = -7x$$
 solves $x^2y'' - 4xy' + 6y = -14x$.
 $y_{p_1}' = -7$ $x^2y_{p_1}'' - 4xy_{p_2}' + 6y_{p_3} \stackrel{?}{=} -14x$
 $y_{p_1}'' = 0$ $x^2(0) - 4x(-7) + 6(-7x) \stackrel{?}{=} -14x$
 $x^2(0) - 4x(-7) + 6(-7x) \stackrel{?}{=} -14x$

Example $x^2y'' - 4xy' + 6y = 36 - 14x$

(c) Recall that $y_1 = x^2$ and $y_2 = x^3$ is a fundamental solution set of

$$x^2y'' - 4xy' + 6y = 0.$$

Use this along with results (a) and (b) to write the general solution of $x^2y'' - 4xy' + 6y = 36 - 14x$.

The general solution is

Solve the IVP

$$x^{2}y'' - 4xy' + 6y = 36 - 14x, \quad y(1) = 0, \quad y'(1) = -5$$
Our general solution is
$$y = c_{1}x^{2} + c_{2}x^{3} + 6 - 7x$$

$$y' = 2c_{1}x + 3c_{2}x^{2} - 7$$

$$y(1) = c_{1}(1)^{2} + c_{2}(1)^{3} + 6 - 7(1) = 0$$

$$c_{1} + c_{2} - 1 = 0 \implies c_{1} + c_{2} = 1$$

$$y'(1) = 2c_{1}(1) + 3c_{2}(1)^{2} - 7 = -5$$

$$2c_{1} + 3c_{2} = 2$$

$$C_1 + C_2 = 1$$
 \Rightarrow $-2C_1 - 2C_2 = -2$
 $2C_1 + 3C_2 = 2$
 $2C_2 = 0$

The solution to the INP is
 $y = x^2 + 6 - 7x$,

Section 4.2: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = 0.$$

Let us assume that $a_2(x) \neq 0$ on the interval of interest. We will write our equation in **standard form**

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$$

where $P = a_1/a_2$ and $Q = a_0/a_2$.

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$$

Recall that every fundmantal solution set will consist of two linearly independent solutions y_1 and y_2 , and the general solution will have the form

$$y = c_1 y_1(x) + c_2 y_2(x).$$

Suppose we happen to know one solution $y_1(x)$. Reduction of order is a method for finding a second linearly independent solution $y_2(x)$ that starts with the assumption that

$$y_2(x) = u(x)y_1(x)$$

for some function u(x). The method involves finding the function u.

Example

Verify that $y_1 = e^{-x}$ is a solution of y'' - y = 0. Then find a second solution y_2 of the form

$$y_2(x) = u(x)y_1(x) = e^{-x}u(x).$$

Confirm that the pair y_1, y_2 is linearly independent.

Ver.f. that
$$y_1 = e^{x}$$
 solves the DE:
 $y_1 = e^{x}$, $y_1' = -e^{x}$, $y_1'' = e^{x}$
 $y_1'' - y_1 \stackrel{?}{=} 0$ $e^{x} - e^{x} = 0$ $0 = 0$ $\sqrt{2}$
So y_1 does solve the D.E.

$$y_{2} = e^{x} u$$

$$y_{1}^{2} = e^{x} u^{1} - e^{x} u$$

$$y_{2}^{3} = e^{x} u^{3} - e^{x} u^{4} - e^{x} u^{4} + e^{x} u$$

$$= e^{x} u^{3} - 2e^{x} u^{4} + e^{x} u$$

$$y_{2}^{3} - y_{2} = 0$$

$$y_{2}^{"} - y_{2} = 0$$
 $e^{x}u'' - 2e^{x}u' + e^{x}u - e^{x}u = 0$
 $e^{x}u'' - 2e^{x}u' = 0 + u^{nest} + hos egn.$

This equation is 1st order in w. Let W= w.

Then W = W". The DE becomes

$$w' - 2w = 0 \Rightarrow \frac{dw}{dx} = 2w$$

$$\frac{1}{\sqrt{2}} \frac{dx}{dx} dx = 2dx$$

Since
$$u' = W$$
, $u = \int w dx = \int e^{2x} dx = \frac{1}{2} e^{2x}$

Lets verify they are linearly Independent.

$$V(\gamma_1, \gamma_2) (x)^2 \begin{vmatrix} e^{x} & \frac{1}{2}e^{x} \\ -e^{x} & \frac{1}{2}e^{x} \end{vmatrix} = \frac{1}{2} + \frac{1}{2} = 1 \neq 0$$

Hence they are lin. independent.