September 18 Math 2306 sec 54 Fall 2015

Section 4.1 Some Theory of Linear Equations

General Solution of Nonhomogeneous Equation
Let y_{p} be any solution of the nonhomogeneous equation, and let y_{1}, y_{2}, \ldots, y_{n} be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Superposition Principle for Nonhomogeneous Equations

Let $y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions to the nonhomogeneous linear equations

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{i}(x)
$$

for $i=1, \ldots, k$. Assume the domain of definition for all k equations is a common interval I.

Then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}
$$

is a particular solution of the nonhomogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x) .
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(a) Verify that

$$
\begin{array}{rlrl}
y_{p_{1}}=6 & \text { solves } & x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y= & 36 . \\
y_{p_{1}}^{\prime}=0 & & ? \\
y_{p_{1}^{\prime}}^{\prime \prime}=0 & x^{2} y_{p}^{\prime \prime}-4 x y_{p}^{\prime}+6 y_{p} & \stackrel{?}{=} 36 \\
& & ? \\
x^{2}(0)-4 x(0)+6(6) & =36 \\
36 & =36
\end{array}
$$

So $y_{p_{1}}=6$ solves the nonhomogeneous equation.

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Verify that

$$
\begin{aligned}
& y_{p_{2}}=-7 x \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x . \\
& y_{p_{2}}^{\prime}=-7 \\
& x^{2} y_{p_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}} \stackrel{?}{=}-14 x \\
& y_{p_{2}}{ }^{\prime \prime}=0 \\
& x^{2}(0)-4 x(-7)+6(-7 x) \stackrel{?}{=}-14 x \\
& 28 x-42 x \stackrel{?}{=}-14 x
\end{aligned}
$$

So $y_{p_{2}}$ solves the

$$
-14 x=-14 x
$$ nonhomogeneous eqn.

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Recall that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.
we con take $y_{p}=y_{p_{1}}+y_{p_{2}}=6-7 x$
The general solution is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=-5
$$

Our genend solation is

$$
\begin{gathered}
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x \\
y^{\prime}=2 c_{1} x+3 c_{2} x^{2}-7 \\
y(1)=c_{1}(1)^{2}+c_{2}(1)^{3}+6-7(1)=0 \\
c_{1}+c_{2}-1=0 \Rightarrow c_{1}+c_{2}=1 \\
y^{\prime}(1)=2 c_{1}(1)+3 c_{2}(1)^{2}-7=-5 \\
2 c_{1}+3 c_{2}=2
\end{gathered}
$$

$$
\begin{aligned}
c_{1}+c_{2} & =1 \\
2 c_{1}+3 c_{2} & =2 \\
c_{1}+0 & =1 \Rightarrow \quad c_{1}=1
\end{aligned} \quad \begin{aligned}
-2 c_{1}-2 c_{2} & =-2 \\
2 c_{1}+3 c_{2} & =2 \\
c_{2} & =0
\end{aligned} \quad \text { add }
$$

The solution to the IVP is

$$
y=x^{2}+6-7 x
$$

Section 4.2: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Recall that every fundmantal solution set will consist of two linearly independent solutions y_{1} and y_{2}, and the general solution will have the form

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Suppose we happen to know one solution $y_{1}(x)$. Reduction of order is a method for finding a second linearly independent solution $y_{2}(x)$ that starts with the assumption that

$$
y_{2}(x)=u(x) y_{1}(x)
$$

for some function $u(x)$. The method involves finding the function u.

Example
Verify that $y_{1}=e^{-x}$ is a solution of $y^{\prime \prime}-y=0$. Then find a second solution y_{2} of the form

$$
y_{2}(x)=u(x) y_{1}(x)=e^{-x} u(x) .
$$

Confirm that the pair y_{1}, y_{2} is linearly independent.
Verify, that $y_{1}=e^{-x}$ solves the $D E$:

$$
\begin{aligned}
y_{1}=e^{-x}, y_{1}^{\prime}=-e^{-x}, & y_{1}^{\prime \prime}=e^{-x} \\
y_{1}^{\prime \prime}-y_{1} & \stackrel{?}{=} 0
\end{aligned} e^{-x}-e^{-x}=0 \quad 0=0
$$

So y, does solve the D.E.
Set $y_{2}=e^{-x} u(x)$ and sub into the DE.

$$
\begin{aligned}
& y_{2}=e^{-x} u \\
& y_{2}^{\prime}=e^{-x} u^{\prime}-e^{-x} u \\
& y_{2}^{\prime \prime}=e^{-x} u^{\prime \prime}-e^{-x} u^{\prime}-e^{-x} u^{\prime}+e^{-x} u \\
&=e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}+e^{-x} u \\
& y_{2}^{\prime \prime}-y_{2}=0 \\
& e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}+e^{-x} u-e^{-x} u=0 \\
& e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}=0 \in u^{\text {must solve thos }} \text { seqn. }
\end{aligned}
$$

This equation is $1^{\text {st }}$ order in u^{\prime}. Let $w=w^{\prime}$.
Then $w^{\prime}=u^{\prime \prime}$. The DE becomes

$$
\begin{gathered}
e^{-x} w^{\prime}-2 e^{-x} w=0 \quad \text { divide by } e^{-x} \\
w^{\prime}-2 w=0 \Rightarrow \frac{d w}{d x}=2 w \\
\frac{1}{w} \frac{d w}{d x} d x=2 d x \\
\int \frac{1}{w} d w=\int 2 d x \\
\ln w=2 x \Rightarrow w=e^{2 x}
\end{gathered}
$$

Since $u^{\prime}=w, \quad u=\int w d x=\int e^{2 x} d x=\frac{1}{2} e^{2 x}$

$$
\begin{aligned}
& y_{2}(x)= e^{-x} u(x)=e^{-x}\left(\frac{1}{2} e^{2 x}\right)=\frac{1}{2} e^{x} \\
& \text { So } y_{1}=e^{-x} \text { and } y_{2}=\frac{1}{2} e^{x}
\end{aligned}
$$

Lets verify they are linearly independent.

$$
W\left(y_{1}, y_{2}\right)(x)^{2}\left|\begin{array}{cc}
e^{-x} & \frac{1}{2} e^{x} \\
-e^{-x} & \frac{1}{2} e^{x}
\end{array}\right|=\frac{1}{2}+\frac{1}{2}=1 \neq 0
$$

Hence they are lin. indepardent.

