September 19 MATH 1113 sec. 51 Fall 2018

Section 4.5: Rational Functions

Definition: The function f(x) is a *rational function* if *f* has the form

$$f(x)=\frac{p(x)}{q(x)}$$

where p(x) and q(x) are both polynomials (and q(x) is not the zero function).

Remember that division by zero is not defined!

Domain of a Rational Function: The domain of f is

 $\{x\in\mathbb{R}\mid q(x)\neq 0\}.$

Notation: The symbol "∈" means in as in is an element of.

Examples

Some examples of rational functions include:

$$f(x) = \frac{3x^2 + 4x - 1}{x^3 - x}, \quad g(x) = \frac{1}{x + 1}, \quad h(x) = \frac{1}{4x + 3} + 2$$

f and g are clearly ratios of polynomials
Note

$$h(x) = \frac{1}{4x + 3} + 2 = \frac{1}{4x + 5} + 2 \left(\frac{4x + 3}{4x + 3}\right)$$

$$= \frac{1}{4x + 3} + \frac{8x + b}{4x + 3} = \frac{8x + 7}{4x + 3}$$

September 19, 2018 2 / 43

Question

Which results in a true statement.

The function $F(x) = \frac{\sqrt{x}}{x^2 + 3x}$

(a) IS a rational function because it is a fraction.

(b)) IS NOT a rational function because \sqrt{x} is not a polynomial.

- (c) IS a rational function because $\sqrt{x} = x^{1/2}$.
- (d) IS NOT a rational function because its name is a capital letter F instead of lowercase f

September 19, 2018

3/43

Example

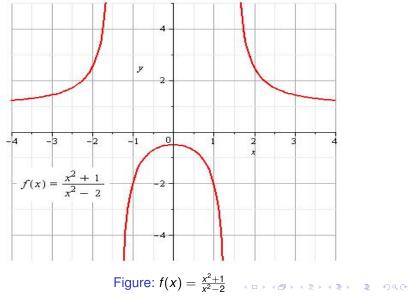
Determine the domain of the rational function

$$f(x) = \frac{3x^2 + 4x - 1}{x^3 - x}$$
 Here $q(x) = x^3 - x$ and our domain
will be all reals such that
 $q(x) \neq 0$.

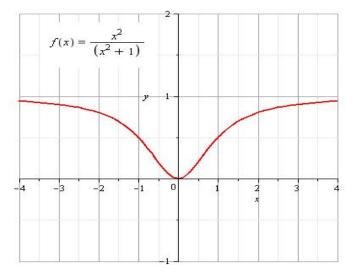
Find the zeros of
$$q$$
:
 $q(x)=0 \implies x^3-x=0$
feature $x(x^2-1)=0$
 $x(x-1)(x+1)=0$

The domain of
$$f$$
 is
 $(-\infty, -1) \cup (-1, 0) \cup (0, 1) \cup (1, \infty).$

Graphs of Rational Functions



Graphs of Rational Functions



Graphs of Rational Functions

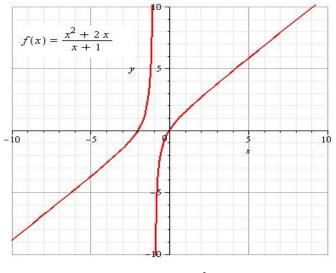


Figure: $f(x) = \frac{x^2 + 2x}{x+1}$ $(\square) (\square)$

Graphing Rational Functions: Asymptotes

Unlike a polynomial, a rational function's domain need not be all real numbers, and its graph may have asymptotes.

Question: How does a rational function behave near a value of x = afor which q(a) = 0?

It turns out that there are two possibilities:

▶ The function values blow up –i.e go to ∞ or $-\infty$ ($p(a) \neq 0$), or

イロト 不得 トイヨト イヨト ヨー ろくの September 19, 2018

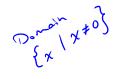
9/43

• the graph has a **hole** in it. (p(a) = 0).

Vertical Asymptote

Consider the simple rational function

$$f(x)=\frac{1}{x}$$



Determine the behavior of f(x) for $x \approx 0$.

X	f(x)	X	f(x)
0.1	10	-0.1	- 10
0.01	100	-0.01	-100
0.001	1600	-0.001	-1000
0.0001	10,000	-0.0001	-10,000

Vertical Asymptote

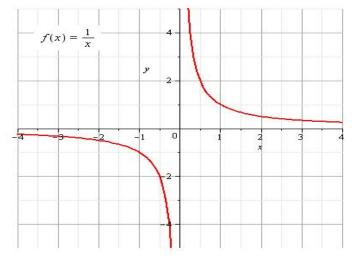


Figure: For $x \approx 0$, the graph seems to hug the vertical line x = 0.

イロト 不得 トイヨト イヨト 二日

Vertical Asymptote

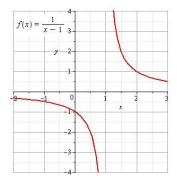
Definition: The vertical line x = a is a vertical asymptote of the function *f* if f(x) increases without bound as *x* approaches the number *a*.

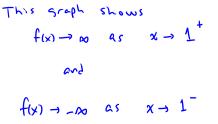
Remark 1: A rational function **MAY** have a vertical asymptote at a value *a* that is not in its domain.

Remark 2: The graph of a rational function **CANNOT** cross a vertical asymptote.

Some Useful Notation

- ▶ $x \rightarrow a$ reads as "x approaches a",
- ▶ $x \rightarrow a^-$ reads as "x approaches a from the left",
- ▶ $x \rightarrow a^+$ reads as "x approaches a from the right",
- ▶ $f(x) \rightarrow \infty$ reads as "f of x approaches *infinity*", and
- ▶ $f(x) \rightarrow -\infty$ reads as "*f* of *x* approaches negative *infinity*."





イロト 不得 トイヨト イヨト ヨー ろくの September 19, 2018

13/43

Lowest Terms

Definition: The rational function

$$f(x)=\frac{p(x)}{q(x)}$$

is in **lowest terms** if the polynomials *p* and *q* have no common factors.

Example:

 $f(x) = \frac{(x+2)(x-3)}{x^2(x+5)}$ is in lowest terms. $g(x) = \frac{(x+2)(x-3)}{x^2(x+2)}$ is NOT in lowest terms. In lowest terms $g(x) = \frac{x-3}{x^2}$ for $x \neq -2$

September 19, 2018 14 / 43

Question

Consider the two rational functions F and G.

$$F(x) = \frac{x^2 - 1}{x^2 + x} = \frac{(x - 1)(x - 1)}{x(x - 1)} \quad G(x) = \frac{x^2 - 1}{x^2 - 4} = \frac{(x - 1)(x - 1)}{(x - 2)(x - 1)}$$

Which of the following is true?

(a) F and G are in lowest terms.

(b) Neither *F* nor *G* is in lowest terms.

(c) F is in lowest terms, but G is not in lowest terms.

(d) F is not in lowest terms, but G is in lowest terms.

Finding Vertical Asymptotes

Theorem: Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function in lowest terms. If a is any number such that q(a) = 0, then

the line x = a is a vertical asymptote to the graph of f.

Remark: To find vertical asymptote(s): (1) get f into lowest terms, then (2) determine all values that make the denominator zero.

> September 19, 2018

16/43

Note that a vertical asymptote is a line—i.e. x = -2 could be a vertical asymptote, but -2 CANNOT.

Example: $f(x) = \frac{x^2+3x}{x^3-x}$ Determine the domain of the rational function *f*.

$$f(x) = \frac{x^2 + 3x}{x^3 - x} = \frac{x(x+3)}{x(x-1)(x+1)}$$

The denominator is zero if $x=0, x=1$,
or $x=-1$.
The domain is $\{x \mid x \neq 0, x \neq 1, \text{ and } x \neq -1\}$

<ロト <回 > < 回 > < 回 > < 回 > … 回

Example: $f(x) = \frac{x^2+3x}{x^3-x}$ Express *f* in lowest terms.

$$f(x) = \frac{x(x+3)}{x(x-1)(x+1)}$$
 Not in lowest terns
due to common factor
x

$$f(x) = \frac{x+3}{(x-1)(x+1)}$$
 for $x \neq 0$

Example: $f(x) = \frac{x^2+3x}{x^3-x}$ Find the equations of all vertical asymptotes to *f*.

$$f(x) = \frac{x+3}{(x-1)(x+1)}$$
 for $x \neq 0$
There are two vertical asymptotes
 $x=1$ and $x=-1$.
* Note if $g(x) = \frac{x+3}{(x-1)(x+1)}$ then $g(0) = \frac{0+3}{(0-1)(0+1)} = -3$

So has a hole @ (0,-3).

イロン イボン イヨン 一日

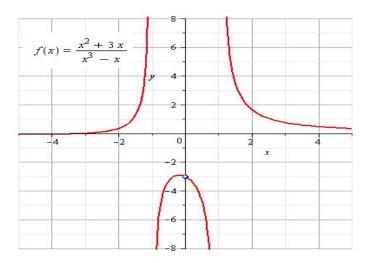


Figure: There is a hole in the graph at the point (0, -3).

September 19, 2018 20 / 43

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Question

Determine the domain of g, and find all vertical asymptotes to g.

$$g(x) = \frac{x^2 - x - 2}{x^2 - 4} = \frac{(x - z)(x + 1)}{(x - z)(x + 2)}$$

September 19, 2018

21/43

(a) The domain is $(-\infty, -2) \cup (-2, \infty)$, and there is one V. asymptote x = -2.

(b) The domain is $\{x \in \mathbb{R} \mid x \neq \pm 2\}$, and there is one V. asymptote x = -2.

- (c) The domain is $\{x \in \mathbb{R} \mid x \neq \pm 2\}$, and there are two V. asymptotes x = -2 and x = 2.
- (d) The domain is $(-\infty, -2) \cup (-2, -1) \cup (-1, \infty)$, and there is one V. asymptote x = -2.

Horizontal Asymptotes

Vertical asymptotes correspond to unbounded f(x) values. What about when the independent variable *x* becomes unbounded?

Definition: The horizontal line y = b is a horizontal asymptote to the function *f* if the graph of f(x) hugs the line y = b as *x* becomes unbounded. Symbolically

$$f(x) \rightarrow b$$
 as $x \rightarrow \infty$ or as $x \rightarrow -\infty$.

September 19, 2018

22/43