September 19 MATH 1113 sec. 52 Fall 2018

Section 4.5: Rational Functions

Definition: The function f(x) is a *rational function* if *f* has the form

$$f(x)=\frac{p(x)}{q(x)}$$

where p(x) and q(x) are both polynomials (and q(x) is not the zero function).

Remember that division by zero is not defined!

Domain of a Rational Function: The domain of f is

 $\{x\in\mathbb{R}\mid q(x)\neq 0\}.$

Notation: The symbol " \in " means *in* as in *is an element of*.

Examples

Some examples of rational functions include:

$$f(x) = \frac{3x^2 + 4x - 1}{x^3 - x}, \quad g(x) = \frac{1}{x + 1}, \quad h(x) = \frac{1}{4x + 3} + 2$$

f and g are clearly ratios of polynomicls.
Note that

$$h(x) = \frac{1}{4x + 3} + 2 = \frac{1}{4x + 3} + 2\left(\frac{4x + 3}{4x + 3}\right)$$

$$= \frac{1}{4x + 3} + \frac{8x + 6}{4x + 3} = \frac{8x + 7}{4x + 3}$$

$$h(x) = \frac{8x + 7}{4x + 3} \quad \text{is also a rational function}.$$

September 19, 2018 2 / 43

Question

Which results in a true statement.

The function $F(x) = \frac{\sqrt{x}}{x^2 + 3x}$

(a) IS a rational function because it is a fraction.

IS NOT a rational function because \sqrt{x} is not a polynomial.

- (c) IS a rational function because $\sqrt{x} = x^{1/2}$.
- (d) IS NOT a rational function because its name is a capital letter F instead of lowercase f.

September 19, 2018

3/43

Example

Determine the domain of the rational function

$$f(x) = \frac{3x^2 + 4x - 1}{x^3 - x}$$
Here $q(x) = x^3 - x$. Our domain
is all reals except the zeros
of q .
Let's find the zeros of q .
 $q(y) = 0 \implies x^3 - x = 0$
 $x(x^2 - 1) = 0$
 $x(x - 1)(x + 1) = 0$

<ロ> <四> <四> <四> <四> <四</p>

Graphs of Rational Functions

Graphs of Rational Functions

Figure:
$$f(x) = \frac{x^2}{x^2+1}$$
 substant $f(x) = \frac{x^2}{x^2+1}$

Graphs of Rational Functions

Figure: $f(x) = \frac{x^2 + 2x}{x+1}$ $(\square) (\square)$

Graphing Rational Functions: Asymptotes

Unlike a polynomial, a rational function's domain need not be all real numbers, and its graph may have asymptotes.

Question: How does a rational function behave near a value of x = afor which q(a) = 0?

It turns out that there are two possibilities:

▶ The function values blow up –i.e go to ∞ or $-\infty$ ($p(a) \neq 0$), or

イロト 不得 トイヨト イヨト ヨー ろくの September 19, 2018

9/43

• the graph has a **hole** in it. (p(a) = 0).

Vertical Asymptote

Consider the simple rational function

$$f(x)=\frac{1}{x}$$

.

Determine the behavior of f(x) for $x \approx 0$.

X	f(x)	X	f(x)
0.1	10	-0.1	-10
0.01	(00)	-0.01	-100
0.001	000	-0.001	-1000
0.0001	(D ₎ ۵۵۰	-0.0001	- (0,000

<ロト <回 > < 回 > < 回 > < 回 > … 回

Vertical Asymptote

Figure: For $x \approx 0$, the graph seems to hug the vertical line x = 0.

イロト 不得 トイヨト イヨト 二日

Vertical Asymptote

Definition: The vertical line x = a is a vertical asymptote of the function *f* if f(x) increases without bound as *x* approaches the number *a*.

Remark 1: A rational function **MAY** have a vertical asymptote at a value *a* that is not in its domain.

Remark 2: The graph of a rational function **CANNOT** cross a vertical asymptote.

Some Useful Notation

- $x \rightarrow a$ reads as "*x* approaches *a*",
- ▶ $x \rightarrow a^-$ reads as "*x* approaches *a* from the left",
- ► $x \rightarrow a^+$ reads as "*x* approaches *a* from the right",
- $f(x) \rightarrow \infty$ reads as "*f* of *x* approaches *infinity*", and
- ► $f(x) \rightarrow -\infty$ reads as "*f* of *x* approaches negative *infinity*."

What's in this graph can be described as $f(x) \rightarrow \infty$ as $x \rightarrow a^{+}$ and $f(x) \rightarrow -\infty$ as $x \rightarrow a^{-}$

Lowest Terms

Definition: The rational function

$$f(x)=\frac{p(x)}{q(x)}$$

is in **lowest terms** if the polynomials *p* and *q* have no common factors.

Example:

$$f(x) = \frac{(x+2)(x-3)}{x^2(x+5)}$$
 is in lowest terms.

$$g(x) = \frac{(x+2)(x-3)}{x^2(x+2)}$$
 is NOT in lowest terms.

$$g(x) = \frac{x-3}{x^2} \quad \text{for} \quad x \neq -2.$$

September 19, 2018 14 / 43

э

Question

Consider the two rational functions F and G.

$$F(x) = \frac{x^2 - 1}{x^2 + x} = \frac{(x - 1)(x + 1)}{(x + 1)} \quad G(x) = \frac{x^2 - 1}{x^2 - 4} = \frac{(x - 1)(x + 1)}{(x - 2)(x + 1)}$$

September 19, 2018

15/43

Which of the following is true?

(a) F and G are in lowest terms.

(b) Neither F nor G is in lowest terms.

(c) F is in lowest terms, but G is not in lowest terms.

(d) F is not in lowest terms, but G is in lowest terms.

Finding Vertical Asymptotes

Theorem: Let $f(x) = \frac{p(x)}{q(x)}$ be a rational function in lowest terms. If a is any number such that q(a) = 0, then

the line x = a is a vertical asymptote to the graph of f.

Remark: To find vertical asymptote(s): (1) get f into lowest terms, then (2) determine all values that make the denominator zero.

> September 19, 2018

16/43

Note that a vertical asymptote is a line—i.e. x = -2 could be a vertical asymptote, but -2 CANNOT.

Example: $f(x) = \frac{x^2 + 3x}{x^3 - x}$

Determine the domain of the rational function *f*.

$$f(x) = \frac{x^2 + 3x}{x(x^2 - 1)} = \frac{x^2 + 3x}{x(x - 1)(x + 1)}$$

The numbers 0, 1, -1 are not in the domain.
The domain is
 $\{x \mid x \neq 0, x \neq 1, and x \neq -1\},\$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで September 19, 2018 17 / 43 Example: $f(x) = \frac{x^2+3x}{x^3-x}$ Express *f* in lowest terms.

$$f(x) = \frac{x(x+3)}{x(x-1)(x+1)}$$

ve have a common x

$$f(x) = \frac{x+3}{(x-1)(x+1)}$$
, $x \neq 0$

September 19, 2018 18 / 43

イロン イ団 とく ヨン ・ ヨン …

Example: $f(x) = \frac{x^2 + 3x}{x^3 - x}$ Find the equations of all vertical asymptotes to *f*.

$$f(x) = \frac{X+3}{(X-1)(X+1)}, \quad x \neq 0$$

There are two vertical asymptotes
$$X = -1 \quad \text{and} \quad X = 1.$$

If
$$g(x) = \frac{x+3}{(x-1)(x+1)}$$
, then $g(0) = \frac{0+3}{(0-1)(0+1)} = -3$

September 19, 2018 19 / 43

イロン イ理 とく ヨン イヨン

Figure: There is a hole in the graph at the point (0, -3).

September 19, 2018 20 / 43

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣

Question

Determine the domain of g, and find all vertical asymptotes to g.

$$g(x) = \frac{x^2 - x - 2}{x^2 - 4} \quad : \quad \frac{(x - 2)(x + 1)}{(x - 2)(x + 2)}$$

September 19, 2018

21/43

(a) The domain is $(-\infty, -2) \cup (-2, \infty)$, and there is one V. asymptote x = -2.

(b) The domain is $\{x \in \mathbb{R} \mid x \neq \pm 2\}$, and there is one V. asymptote x = -2.

- (c) The domain is $\{x \in \mathbb{R} \mid x \neq \pm 2\}$, and there are two V. asymptotes x = -2 and x = 2.
- (d) The domain is $(-\infty, -2) \cup (-2, -1) \cup (-1, \infty)$, and there is one V. asymptote x = -2.