September 19 MATH 1113 sec. 52 Fall 2018

Section 4.5: Rational Functions

Definition: The function $f(x)$ is a rational function if f has the form

$$
f(x)=\frac{p(x)}{q(x)}
$$

where $p(x)$ and $q(x)$ are both polynomials (and $q(x)$ is not the zero function).

Remember that division by zero is not defined!

Domain of a Rational Function: The domain of f is

$$
\{x \in \mathbb{R} \mid q(x) \neq 0\} .
$$

Notation: The symbol " \in " means in as in is an element of.

Examples
Some examples of rational functions include:

$$
f(x)=\frac{3 x^{2}+4 x-1}{x^{3}-x}, \quad g(x)=\frac{1}{x+1}, \quad h(x)=\frac{1}{4 x+3}+2
$$

f and g are clearly ratios of polynomices.
Note that

$$
\begin{aligned}
& \text { ot that } \\
& h(x)=\frac{1}{4 x+3}+2=\frac{1}{4 x+3}+2\left(\frac{4 x+3}{4 x+3}\right) \\
& =\frac{1}{4 x+3}+\frac{8 x+6}{4 x+3}=\frac{8 x+7}{4 x+3}
\end{aligned}
$$

$h(x)=\frac{8 x+7}{4 x+3}$ is also a rationed function.

Question

Which results in a true statement.
The function $F(x)=\frac{\sqrt{x}}{x^{2}+3 x}$
(a) IS a rational function because it is a fraction.
(b) IS NOT a rational function because \sqrt{x} is not a polynomial.
(c) IS a rational function because $\sqrt{x}=x^{1 / 2}$.
(d) IS NOT a rational function because its name is a capital letter F instead of lowercase f.

Example
Determine the domain of the rational function
$f(x)=\frac{3 x^{2}+4 x-1}{x^{3}-x}$ Here $q(x)=x^{3}-x$. Our domain is all reals except the zeros of q.

Let's find the zeros of q.

$$
\begin{array}{r}
q(x)=0 \Rightarrow x^{3}-x=0 \\
x\left(x^{2}-1\right)=0 \\
x(x-1)(x+1)=0
\end{array}
$$

$$
q(x)=0 \text { if } x=0, \quad x-1=0 \text { or } x+1=0
$$

we hour three zeros, 0,1 , and -1 .

The domain is

$$
(-\infty,-1) \cup(-1,0) \cup(0,1) \cup(1, \infty)
$$

In set builder notation

$$
\{x \mid x \neq 0, x \neq 1 \text {, and } x \neq-1\}
$$

Graphs of Rational Functions

Figure: $f(x)=\frac{x^{2}+1}{x^{2}-2}$

Graphs of Rational Functions

Figure: $f(x)=\frac{x^{2}}{x^{2}+1}$

Graphs of Rational Functions

Figure: $f(x)=\frac{x^{2}+2 x}{x+1}$

Graphing Rational Functions: Asymptotes

Unlike a polynomial, a rational function's domain need not be all real numbers, and its graph may have asymptotes.

Question: How does a rational function behave near a value of $x=a$ for which $q(a)=0$?

It turns out that there are two possibilities:

- The function values blow up -i.e go to ∞ or $-\infty(p(a) \neq 0)$, or
- the graph has a hole in it. $(p(a)=0)$.

Vertical Asymptote

Consider the simple rational function

$$
f(x)=\frac{1}{x} .
$$

Determine the behavior of $f(x)$ for $x \approx 0$.

x	$f(x)$	x	$f(x)$
0.1	10	-0.1	-10
0.01	100	-0.01	-100
0.001	1000	-0.001	-1000
0.0001	10,000	-0.0001	$-10,000$

Vertical Asymptote

Figure: For $x \approx 0$, the graph seems to hug the vertical line $x=0$.

Vertical Asymptote

Definition: The vertical line $x=a$ is a vertical asymptote of the function f if $f(x)$ increases without bound as x approaches the number a.

Remark 1: A rational function MAY have a vertical asymptote at a value a that is not in its domain.

Remark 2: The graph of a rational function CANNOT cross a vertical asymptote.

Some Useful Notation

- $x \rightarrow$ a reads as " x approaches $a "$,
- $x \rightarrow a^{-}$reads as " x approaches a from the left",
- $x \rightarrow a^{+}$reads as " x approaches a from the right",
- $f(x) \rightarrow \infty$ reads as " f of x approaches infinity", and
- $f(x) \rightarrow-\infty$ reads as " f of x approaches negative infinity."

what's in this graph con be described as

$$
f(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow a^{+}
$$

and

$$
f(x) \rightarrow-\infty \quad \text { as } \quad x \rightarrow a^{-}
$$

Lowest Terms

Definition: The rational function

$$
f(x)=\frac{p(x)}{q(x)}
$$

is in lowest terms if the polynomials p and q have no common factors.

Example:

$$
\begin{aligned}
& f(x)=\frac{(x+2)(x-3)}{x^{2}(x+5)} \quad \text { is in lowest terms. } \\
& g(x)=\frac{(x+2)(x-3)}{x^{2}(x+2)} \text { is NOT in lowest terms. } \\
& g(x)=\frac{x-3}{x^{2}} \quad \text { for } x \neq-2
\end{aligned}
$$

Question

Consider the two rational functions F and G.

$$
F(x)=\frac{x^{2}-1}{x^{2}+x}=\frac{(x-1)(x+1)}{x(x+1)} \quad G(x)=\frac{x^{2}-1}{x^{2}-4}=\frac{(x-1)(x+1)}{(x-2)(x+2)}
$$

Which of the following is true?
(a) F and G are in lowest terms.
(b) Neither F nor G is in lowest terms.
(c) F is in lowest terms, but G is not in lowest terms.
(d) F is not in lowest terms, but G is in lowest terms.

Finding Vertical Asymptotes

Theorem: Let $f(x)=\frac{p(x)}{q(x)}$ be a rational function in lowest terms. If a is any number such that $q(a)=0$, then
the line $x=a$ is a vertical asymptote to the graph of f.

Remark: To find vertical asymptote(s): (1) get f into lowest terms, then (2) determine all values that make the denominator zero.

Note that a vertical asymptote is a line-i.e. $x=-2$ could be a vertical asymptote, but -2 CANNOT.

Example: $f(x)=\frac{x^{2}+3 x}{x^{3}-x}$
Determine the domain of the rational function f.

$$
f(x)=\frac{x^{2}+3 x}{x\left(x^{2}-1\right)}=\frac{x^{2}+3 x}{x(x-1)(x+1)}
$$

The numbers $0,1,-1$ are not in the domain.
The domain is

$$
\{x \mid x \neq 0, x \neq 1 \text {, and } x \neq-1\} \text {. }
$$

Example: $f(x)=\frac{x^{2}+3 x}{x^{3}-x}$
Express f in lowest terms.

$$
\begin{aligned}
& f(x)=\frac{x(x+3)}{x(x-1)(x+1)} \\
& f(x)=\frac{x+3}{(x-1)(x+1)}, \quad x \neq 0
\end{aligned}
$$

we have a common

Example: $f(x)=\frac{x^{2}+3 x}{x^{3}-x}$
Find the equations of all vertical asymptotes to f.

$$
f(x)=\frac{x+3}{(x-1)(x+1)} \quad, \quad x \neq 0
$$

There one two verticd asymptotes

$$
x=-1 \text { and } x=1
$$

* If $g(x)=\frac{x+3}{(x-1)(x+1)}$, then $g(0)=\frac{0+3}{(0-1)(0+1)}=-3$

Figure: There is a hole in the graph at the point $(0,-3)$.

Question

Determine the domain of g, and find all vertical asymptotes to g.

$$
g(x)=\frac{x^{2}-x-2}{x^{2}-4}=\frac{(x-2)(x+1)}{(x-2)(x+2)}
$$

(a) The domain is $(-\infty,-2) \cup(-2, \infty)$, and there is one V . asymptote $x=-2$.
(b) The domain is $\{x \in \mathbb{R} \mid x \neq \pm 2\}$, and there is one V . asymptote $x=-2$.
(c) The domain is $\{x \in \mathbb{R} \mid x \neq \pm 2\}$, and there are two V . asymptotes $x=-2$ and $x=2$.
(d) The domain is $(-\infty,-2) \cup(-2,-1) \cup(-1, \infty)$, and there is one V . asymptote $x=-2$.

