Sept 19 Math 2306 sec. 53 Fall 2018

Section 6: Linear Equations Theory and Terminology

Nonhomogeneous Equations Now we will consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where g is not the zero function. We'll continue to assume that a_{n} doesn't vanish and that a_{i} and g are continuous.

The associated homogeneous equation is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Theorem: General Solution of Nonhomogeneous Equation

Let y_{p} be any solution of the nonhomogeneous equation, and let y_{1}, y_{2}, \ldots, y_{n} be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Note the form of the solution $y_{c}+y_{p}$!
(complementary plus particular)

Another Superposition Principle (for nonhomogeneous eqns.)
 Let $y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions to the nonhomogeneous linear equations

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{i}(x)
$$

for $i=1, \ldots, k$. Assume the domain of definition for all k equations is a common interval I.

Then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}
$$

is a particular solution of the nonhomogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x) .
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$

 We will construct the general solution by considering sub-problems.(a) Part 1 Verify that

$$
\begin{aligned}
& y_{p_{1}}=6 \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36 . \\
& y_{p_{1}}^{\prime}=0 \quad x^{2} y_{p_{1}^{\prime \prime}}^{\prime \prime}-4 x y_{p_{1}}^{\prime}+6 y_{p_{1}}=? \\
& y_{p}{ }^{\prime \prime}=0 \\
& x^{2}(0)-4 x(0)+6(6)= \\
& 36=36
\end{aligned}
$$

So y_{p}, solves this equation

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Part 2 Verify that

$$
\begin{aligned}
y_{p_{2}}=-7 x \text { solves } & x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x \\
y_{\rho_{2}}^{\prime}=-7 & x^{2} y_{\rho_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}}=\stackrel{?}{-14 x} \\
y_{\rho_{2}}^{\prime \prime}=0 & x^{2}(0)-4 x(-7)+6(-7 x)= \\
28 x-42 x & = \\
-14 x & =-14 x
\end{aligned}
$$

Yea does solve this equation.

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Part 3 We already know that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.

The solution is $y_{c}+y_{p}$

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}=c_{1} x^{2}+c_{2} x^{3}
$$

By superposition, $y_{p}=y_{p_{1}}+y_{p_{2}}=6-7 x$
So the general solution is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=-5
$$

The genera solution (from the previous slides)
is

$$
\begin{aligned}
& y=c_{1} x^{2}+c_{2} x^{3}+6-7 x \\
& y^{\prime}=2 c_{1} x+3 c_{2} x^{2}-7
\end{aligned}
$$

Applying the IC

$$
\begin{aligned}
& \text { Applying } \\
& y(1)=0 \Rightarrow \quad 0=c_{1} 1^{2}+c_{2} 1^{3}+6-7 \cdot 1 \\
& 0=c_{1}+c_{2}-1 \\
& y^{\prime}(1)=-5 \Rightarrow \quad-5=2 c_{1} \cdot 1+3 c_{2} \cdot 1^{2}-7
\end{aligned}
$$

$$
-5=2 C_{1}+3 C_{2}-7
$$

Solve

$$
\begin{aligned}
& c_{1}+c_{2}=1 \\
& 2 c_{1}+3 c_{2}=2 \\
& 2 c_{1}+2 c_{2}=2 \\
&-\left(2 c_{1}+3 c_{2}\right.=2) \\
&-c_{2}=0 \\
& c_{1}=1-c_{2} \\
&=1-0=1
\end{aligned}
$$

The solution to the $\backslash P$ is

$$
y=x^{2}+6-7 x
$$

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Recall that every fundmantal solution set will consist of two linearly independent solutions y_{1} and y_{2}, and the general solution will have the form

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

Suppose we happen to know one solution $y_{1}(x)$. Reduction of order is a method for finding a second linearly independent solution $y_{2}(x)$ that starts with the assumption that

$$
y_{2}(x)=u(x) y_{1}(x)
$$

for some function $u(x)$. The method involves finding the function u.
By linear independence, we know w_{x} cont be a constant function.

Example
Verify that $y_{1}=e^{-x}$ is a solution of $y^{\prime \prime}-y=0$. Then find a second solution y_{2} of the form

$$
y_{2}(x)=u(x) y_{1}(x)=e^{-x} u(x) .
$$

Confirm that the pair y_{1}, y_{2} is linearly independent.
Not

$$
\begin{aligned}
& y_{1}=e^{-x}, y_{1}^{\prime}=-e^{-x}, y_{1}^{\prime \prime}=e^{-x} \text { so } \\
& y_{1}^{\prime \prime}-y_{1}=e^{-x}-e^{-x}=0 \Rightarrow y_{1} \text { is a solution }
\end{aligned}
$$

Since y_{2} is supposed to solve the ODE, well substitute.

$$
\begin{aligned}
& y_{2}=e^{-x} u \\
& y_{2}^{\prime}=e^{-x} u^{\prime}-e^{-x} u
\end{aligned}
$$

September 17, $2018 \quad 12 / 30$

$$
\begin{gathered}
y_{2}^{\prime \prime}=e^{-x} u^{\prime \prime}-e^{-x} u^{\prime}-e^{-x} u^{\prime}+e^{-x} u \\
=e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}+e^{-x} u \\
y_{2}^{\prime \prime}-y_{2}=0 \\
e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}+e^{-x} u-e^{-x} u=0 \\
e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}=0 \\
e^{-x}\left(u^{\prime \prime}-2 u^{\prime}\right)=0 \\
u^{\prime \prime}-2 u^{\prime}=0
\end{gathered}
$$

Let $w=u^{\prime}$, then $w^{\prime}=u^{\prime \prime}$. The equation
is

$$
w^{\prime}-2 w=0
$$

So we can solve this as sepandble or linear.

$$
\begin{aligned}
\frac{d w}{d x} & =2 w \\
\int \frac{1}{w} d w & =\int 2 d x \\
\ln |w| & =2 x
\end{aligned}
$$

separator

Taking the added constant to be zero

$$
|w|=e^{2 x} \quad \text { assume } \quad w>0
$$

$$
\begin{gathered}
w=e^{2 x} \quad w=u^{\prime} \text { so integrate } \\
u=\int e^{2 x} d x=\frac{1}{2} e^{2 x} \quad \text { so } \\
y_{2}=u y_{1}=\frac{1}{2} e^{2 x} \cdot e^{-x}=\frac{1}{2} e^{x}
\end{gathered}
$$

Our pair of functions is $y_{1}=e^{-x}, y_{2}=\frac{1}{2} e^{x}$ well use the Wrous kian to show the s are linearly independent.

$$
w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
e^{-x} & \frac{1}{2} e^{x} \\
-e^{-x} & \frac{1}{2} e^{x}
\end{array}\right|
$$

$$
\begin{aligned}
& =e^{-x}\left(\frac{1}{2} e^{x}\right)-\left(-e^{-x}\right)\left(\frac{1}{2} e^{x}\right) \\
& =\frac{1}{2}-\left(-\frac{1}{2}\right)=\frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

We have a fundcmented solution set.
The genera solution to $y^{\prime \prime}-y=0$
is

$$
y=c_{1} e^{-x}+c_{2} e^{x}
$$

