September 19 Math 2306 sec. 57 Fall 2017

Section 6: Linear Equations Theory and Terminology

We first consider the homogeneous equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

and assume that each a_i is continuous and a_n is never zero on the interval of interest.

Theorem: If y_1, y_2, \dots, y_k are all solutions of this homogeneous equation on an interval I, then the linear combination

$$y(x) = c_1y_1(x) + c_2y_2(x) + \cdots + c_ky_k(x)$$

is also a solution on I for any choice of constants c_1, \ldots, c_k .

This is called the principle of superposition.

We Defined Linear Dependence/Independence

Definition: A set of functions $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are said to be **linearly dependent** on an interval I if there exists a set of constants c_1, c_2, \ldots, c_n with at least one of them being nonzero such that

$$c_1f_1(x) + c_2f_2(x) + \cdots + c_nf_n(x) = 0$$
 for all x in I .

A set of functions that is not linearly dependent on *I* is said to be **linearly independent** on *I*.

Definition of Wronskian

Let f_1, f_2, \ldots, f_n posses at least n-1 continuous derivatives on an interval I. The **Wronskian** of this set of functions is the determinant

$$W(f_1, f_2, \ldots, f_n)(x) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \vdots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}.$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Recall Some Determinants

If
$$A$$
 is a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then its determinant
$$\det(A) = ad - bc.$$

If A is a 3 × 3 matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, then its determinant

$$\det(A) = a_{11}\det\begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12}\det\begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13}\det\begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

Determine the Wronskian of the Functions

$$f_{1}(x) = x^{2}, \quad f_{2}(x) = 4x, \quad f_{3}(x) = x - x^{2}$$

$$3 \text{ functions} \implies 3 \times 3 \text{ matrix}$$

$$W\left(f_{1}, f_{2}, f_{3}\right)(x) = \begin{vmatrix} x^{2} & y_{x} & x - x^{2} \\ 2x & y_{y} & 1 - 2x \\ 2 & 0 & -2 \end{vmatrix}$$

$$= x^{2} \begin{vmatrix} y_{y} & 1 - 2x \\ 0 & 2 \end{vmatrix} - 4x \begin{vmatrix} 2x & 1 - 2x \\ 2 & -2 \end{vmatrix} + (x - x^{2}) \begin{vmatrix} 2x & y_{y} \\ 2 & 0 \end{vmatrix}$$

$$= x^{2} \left(4(-2) - 0 \cdot (1 - 2x) \right) - 4x \left(2x(-2) - 2(1 - 2x) \right)$$

$$= -8x^{2} - 4x \left(-4x - 2 + 4x \right) + (x - x^{2}) \left(-8 \right)$$

$$= -8x^{2} + 8x - 8x + 8x^{2}$$

$$= 0$$

$$s$$
, $W(t',t',t')(x) = 0$

Theorem (a test for linear independence)

Let f_1, f_2, \ldots, f_n be n-1 times continuously differentiable on an interval I. If there exists x_0 in I such that $W(f_1, f_2, \ldots, f_n)(x_0) \neq 0$, then the functions are **linearly independent** on I.

If $y_1, y_2, ..., y_n$ are n solutions of the linear homogeneous n^{th} order equation on an interval I, then the solutions are **linearly independent** on I if and only if $W(y_1, y_2, ..., y_n)(x) \neq 0$ for I each X in I.

¹For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

Determine if the functions are linearly dependent or independent:

$$y_1 = e^x$$
, $y_2 = e^{-x}$ $I = (-\infty, \infty)$ We can use the wronstion $y_1' = e^x$, $y_2' = -e^x$

$$2 \text{ factions} \Rightarrow 2 \times 2$$

$$W(y_1, y_2)(x) = e^x = e^x$$

$$= e^x (-e^x) - e^x (e^x)$$

$$= -e^{\circ} - e^{\circ} = -1 - 1 = -2$$

Fundamental Solution Set

We're still considering this equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$

with the assumptions $a_n(x) \neq 0$ and $a_i(x)$ are continuous on I.

Definition: A set of functions y_1, y_2, \dots, y_n is a fundamental solution **set** of the *n*th order homogeneous equation provided they

- (i) are solutions of the equation,
- (ii) there are *n* of them, and
- (iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of n^{th} order Linear Homogeneous Equation

Let $y_1, y_2, ..., y_n$ be a fundamental solution set of the n^{th} order linear homogeneous equation. Then the **general solution** of the equation is

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x),$$

where c_1, c_2, \ldots, c_n are arbitrary constants.

Example

Verify that $y_1 = e^x$ and $y_2 = e^{-x}$ form a fundamental solution set of the ODE

$$y'' - y = 0$$
 on $(-\infty, \infty)$,

and determine the general solution.

Let's verify that
$$5i,52$$
 solve the ODE.

 $y_i = \check{e}$
 $y_i'' = \check{e}$

we have 2 solutions for the 2nd order equation.

we found the Wronstien $W(y_1,y_2)(x) = -2$ so they are linearly independent.

They constitute a fundamental Solution Set.

The general solution is

y= C, y, + C, y,

y= C, e + C, e

September 15, 2017

Nonhomogeneous Equations

Now we will consider the equation

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

where g is not the zero function. We'll continue to assume that a_n doesn't vanish and that a_i and g are continuous.

The associated homogeneous equation is

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0.$$

Theorem: General Solution of Nonhomogeneous Equation

Let y_p be any solution of the nonhomogeneous equation, and let y_1 , y_2, \ldots, y_n be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

$$y = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x) + y_p(x)$$

where c_1, c_2, \ldots, c_n are arbitrary constants.

Note the form of the solution $y_c + y_p!$ (complementary plus particular)

Another Superposition Principle (for nonhomogeneous eqns.)

Let $y_{p_1}, y_{p_2}, ..., y_{p_k}$ be k particular solutions to the nonhomogeneous linear equations

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g_i(x)$$

for i = 1, ..., k. Assume the domain of definition for all k equations is a common interval I.

Then

$$y_p = y_{p_1} + y_{p_2} + \cdots + y_{p_k}$$

is a particular solution of the nonhomogeneous equation

$$a_n(x)\frac{d^ny}{dx^n} + \cdots + a_0(x)y = g_1(x) + g_2(x) + \cdots + g_k(x).$$

Example
$$x^2y'' - 4xy' + 6y = 36 - 14x$$
 I = (0,\infty)

(a) Verify that

$$y_{p_1} = 6$$
 solves $x^2y'' - 4xy' + 6y = 36$.
Substitute $y_{p_1} = 6$, $y_{p_1} = 0$, $y_{p_1} = 0$
 $x^2y_{p_1} - 4xy_{p_1} + 6y_{p_1} = 0$
 $x^2y_{p_1} - 4xy_{p_1} + 6y_{p_1} = 0$
 $x^2(0) - 4x(0) + 6(6) = 36$ $y_{p_1} = 36$

Example $x^2y'' - 4xy' + 6y = 36 - 14x$

(b) Verify that

$$y_{p_2} = -7x \quad \text{solves} \quad x^2 y'' - 4xy' + 6y = -14x.$$

$$y_{p_2} = -7x \quad y_{p_2} = -7, \quad y_{p_3} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} + 6y_{p_2} = 0$$

$$x^2 y_{p_2} = -4x \quad y_{p_2} = 0$$

Example $x^2y'' - 4xy' + 6y = 36 - 14x$

(c) It is readily shown that $y_1 = x^2$ and $y_2 = x^3$ is a fundamental solution set of

$$x^2y''-4xy'+6y=0$$
. $= 0$. $= 0$ $= 0$ $= 0$ $= 0$ $= 0$.

Use this along with results (a) and (b) to write the general solution of $x^2y'' - 4xy' + 6y = 36 - 14x$.

The general solution to the nonhomogeneous equation $y = c_1 x^2 + c_2 x^3 + b - 7x$

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = 0.$$

Let us assume that $a_2(x) \neq 0$ on the interval of interest. We will write our equation in **standard form**

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$$

where $P = a_1/a_2$ and $Q = a_0/a_2$.

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = 0$$

Recall that every fundmantal solution set will consist of two linearly independent solutions y_1 and y_2 , and the general solution will have the form

$$y = c_1 y_1(x) + c_2 y_2(x).$$

Suppose we happen to know one solution $y_1(x)$. Reduction of order is a method for finding a second linearly independent solution $y_2(x)$ that starts with the assumption that

$$y_2(x)=u(x)y_1(x)$$

for some function u(x). The method involves finding the function u.

Example

Verify that $y_1 = e^{-x}$ is a solution of y'' - y = 0. Then find a second solution y_2 of the form

$$y_2(x) = u(x)y_1(x) = e^{-x}u(x).$$

Confirm that the pair y_1 , y_2 is linearly independent.

We'll sub yz into the oDE

$$y_z = e^{\times} u(x)$$
 $y_z' = e^{\times} u'(x) - e^{\times} u(x)$
 $y_z'' = e^{\times} u'(x) - e^{\times} u'(x) - e^{\times} u'(x) + e^{\times} u(x)$
 $y_z'' = e^{\times} u''(x) - e^{\times} u'(x) + e^{\times} u(x)$

$$y_z'' - y_z = \tilde{e}^{\times} u''(x) - z\tilde{e}^{\times} u'(x) + \tilde{e}^{\times} u(x) - \tilde{e}^{\times} u(x) = 0$$

$$e^{-x} u''(x) - 2e^{-x} u'(x) = 0$$

The equation for wis

I'll ossume W>0

$$\frac{dx}{dw} = zw \Rightarrow \frac{1}{u} \frac{dw}{dx} = z$$

$$u = \int e^{2x} dx = \frac{1}{2} e^{2x}$$
 again taking
$$+ C \text{ as 3ho}.$$

$$y_2 = uy$$
, $y_2 = \frac{1}{2}e^{x} \cdot e^{x} = \frac{1}{2}e^{x}$