September 21 MATH 1113 sec. 51 Fall 2018

Section 4.5: Rational Functions

Vertical asymptotes correspond to unbounded f(x) values. What about when the independent variable *x* becomes unbounded?

Definition: The horizontal line y = b is a horizontal asymptote to the function *f* if the graph of f(x) hugs the line y = b as *x* becomes unbounded. Symbolically

 $f(x) \rightarrow b$ as $x \rightarrow \infty$ or as $x \rightarrow -\infty$.

September 21, 2018 1 / 35

イロト 不得 トイヨト イヨト ヨー ろくの

Horizontal Asymptotes

Some remarks about horizontal asymptotes:

- ▶ A rational function can have **at most** one horizontal asymptote. Meaning if $f(x) \rightarrow b$ as $x \rightarrow \infty$ then it is also true that $f(x) \rightarrow b$ as $x \rightarrow -\infty$.
- A rational function MAY cross a horizontal asymptote. (It might not, but it's possible.)
- A horizontal asymptote is a line! So y = 3 could be a horizontal asymptote, but 3 CANNOT be a horizontal asymptote.

Finding Horizontal Asymptotes

Let
$$f(x) = \frac{p(x)}{q(x)}$$
 be a rational function¹.

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}$$

Let *n* be the degree of *p*, *m* be the degree of *q* and a_n and b_m the leading coefficients for *p* and *q* respectively. There are three cases:

(I) If n < m, then y = 0 is the horizontal asymptote to f.

(II) If n = m, then $y = \frac{a_n}{b_m}$ is the horizontal asymptote to *f*.

(III) If n > m, then f does not have a horizontal asymptote.

¹The results are the same whether f is in lowest terms or not $\rightarrow (a \rightarrow b) = (a \rightarrow b)$

A word on the relative degrees test

We determine whether a horizontal asymptote exists as well as its equation by comparing the degrees of the numberator and denominator.

While this seems like a gimmick, it can be shown rigorously using tools in Calculus!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Determine the equation of any horizontal asymptote to the rational function *f*. If one exists, does the graph cross it?

(a)
$$f(x) = \frac{3x^2 + 7x - 2}{x^2 + 2x} = \frac{f'(x)}{g(x)}$$

 $n = 2$ $n = 2$

There is a horizontal asymptote.
Here
$$a_n = a_2 = 3$$

 $b_n = b_2 = 1$
so the asymptote is $b_2 = \frac{3}{1} \Rightarrow y = 3$

Doer
$$f$$
 cross the asymptote?
We set $f(x)$ equal to g (when $g=3$).
Set $f(x)=3$ try $f(x)=3x^2+7x-2=3(x^2+7x)=3x^2+6x$
 $\frac{3x^2+7x-2}{x^2+7x}=3 \Rightarrow 3x^2+7x-2=3(x^2+7x)=3x^2+6x$
 $7x-2=6x$
 $x=2$
Check to be sure and to see if z is in the
domain: $f(z)=\frac{3(z)^2+7(z)-2}{z^2+2\cdot 2}=\frac{12+14-2}{8}=\frac{24}{8}=3$
The graph crosses $Q(z,3)$.

(b)
$$f(x) = \frac{2x^4 + 9x^2 + 4}{5x^6 + 3x^3 - 2x^2 + 1} = \frac{P(x)}{2}$$

There is a horizontal asymptote
$$\frac{h=0}{2}$$
.
Does the graph cross?
Set $f(x) = y$ where $y=0$
 $\frac{2x^{4} + 9x^{2} + 4}{5x^{6} + 3x^{3} - 2x^{2} + 1} = 0$

September 21, 2018 7 / 35

・ロト・西ト・ヨト・ヨー つくぐ

Question

Does the graph of $f(x) = \frac{x^2 + 2x}{x \perp 1}$ have a horizontal asymptote? n=2, m=1 (a) Yes, its equation is y = 1. n zm (b) Yes, its equation is y = 0.

> September 21, 2018

9/35

(c) Yes, its equation is y = x + 1.

No, it does not. (d)

Oblique Asymptotes

Figure: Graph of $f(x) = \frac{x^2+2x}{x+1}$ together with the line y = x + 1.

September 21, 2018 10 / 35

Oblique Asymptote

From Case III: If n = m + 1 (i.e. *n* is *exactly* one more than *m*), then *f* has an **oblique** asymptote

$$y = mx + b$$
.

To find the asymptote, we perform long division to write

$$f(x) = \frac{p(x)}{q(x)} = mx + b + \frac{r(x)}{q(x)}.$$

The degree of the remainder polynomial r will be less than the degree of q.

If $n \ge m + 2$, then *f* has no horizontal and no oblique asymptotes.

Example

Determine the oblique asymptote for the rational function. Does the graph cross it?

The obligue asymptote is y= X+1. Does it cross? Set fix equal to b. $f(x) = x+1 - \frac{1}{x+1}$ y = x+1 $X + X - \frac{1}{x+1} = X + 1$ $\frac{-1}{x+1} = 0$ =) -1 = 0 always false fix)=y has no solution. The graph does not Cruss . September 21, 2018 13 / 35

Question

Use long division to find the equation of the oblique asymptote to the graph of $g(x) = \frac{2x^3 - x^2 - x + 3}{x^2 - 1}$. (Hint: Write the divisor as $x^2 + 0x - 1$ to align correctly when doing division.)

The equation of the oblique asymptote is

(a)
$$y = 2x$$

(b) $y = 2x - 1$
(c) $y = 2x + 1$

(d) y = 2x + 2

Graphing Rational Functions

We can obtain a graph of a rational function in steps and by identifying key features. These include:

- the domain of the function.
- putting it in lowest terms,
- finding any vertical asymptotes
- finding a horizontal or an obligue asymptote if one exists (determine if the graph crosses)
- find the y-intercept if 0 is in the domain (i.e. find f(0))
- find any x-intercepts (i.e. solve p(x) = 0)
- identify behavior near asymptotes (plot at least one point between each intercept and vert. asymptote)

イロト 不得 トイヨト イヨト ヨー ろくの September 21, 2018

16/35

Plot $f(x) = \frac{x+4}{x^2-3}$ 2

Determine the domain, and put *f* into lowest terms.

 $f(x) = \frac{x+4}{(x-13)(x+13)}$ $g(x) = (x-13)(x+13) \quad s \quad g(x) = 0 \quad \text{if} \quad x = \pm 13$ The domain is $\{x \mid x \neq \pm 13\}$. $f_{-1}(x) = 1 \text{ domain} \quad x = 1 \text{ domain} \quad$

イロト 不得 トイヨト イヨト ヨー ろくの

²We'll plot on the graph a few slides down.

$$f(x) = \frac{x+4}{x^2-3} \quad = \quad \frac{x+4}{(x-\sqrt{3})(x+\sqrt{3})}$$

Find the equation(s) of any vertical asymptotes.

$$f(x) = \frac{x+4}{x^2-3}$$

Identify any horizontal or oblique asymptote, and identify any points at which the graph crosses.

$$f(x) = \frac{x+4}{x^2-3}$$

Identify the points of any x and y intercepts.

y-intecept: O is in the domain. $f(\sigma) = \frac{0+4}{\sigma^2 - 3} = -\frac{4}{3}$ $(\sigma_1 - \frac{4}{3})$ The xintecept is (-4,0) (found earlier).

> ◆□ → < □ → < 重 → < 重 → < 重 → < Ξ → ○ へ ○ September 21, 2018 20 / 35

$$f(x) = \frac{x+4}{x^2-3}$$

Identify points on the graphs—in particular points between intercepts and vertical asymptotes.

Divide the R line

$$f(x) = \frac{x+4}{x^2-3}$$

Identify points on the graphs—in particular points between intercepts and vertical asymptotes.

$$f(-1) = \frac{-1+4}{(-1)^2 - 3} = \frac{3}{-2}$$

$$f(1) = \frac{1+4}{1^2 - 3} = -\frac{5}{-2}$$

$$f(2) = \frac{2+4}{2^2 - 3} = \frac{6}{1} = 6$$

September 21, 2018 22 / 35

$$f(x) = \frac{x+4}{x^2-3}$$
 Intercepts (-4,0) and (0, $\frac{-4}{3}$)

Interval	(-ळ, -५)	(-4, -53)	(-53,0)	(0,57)	(53,00)	
test pt c	-5	- 2	-1	L.	2	
f(c)	-1-12	2	-3 Z	- <u>5</u> 2	6	
sign	_	4	_	_	+	

September 21, 2018 23 / 35

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

