September 21 MATH 1113 sec. 51 Fall 2018

Section 4.5: Rational Functions

Vertical asymptotes correspond to unbounded $f(x)$ values. What about when the independent variable x becomes unbounded?

Definition: The horizontal line $y=b$ is a horizontal asymptote to the function f if the graph of $f(x)$ hugs the line $y=b$ as x becomes unbounded. Symbolically

$$
f(x) \rightarrow b \quad \text { as } \quad x \rightarrow \infty \quad \text { or as } \quad x \rightarrow-\infty
$$

Horizontal Asymptotes

Some remarks about horizontal asymptotes:

- A rational function can have at most one horizontal asymptote. Meaning if $f(x) \rightarrow b$ as $x \rightarrow \infty$ then it is also true that $f(x) \rightarrow b$ as $x \rightarrow-\infty$.
- A rational function MAY cross a horizontal asymptote. (It might not, but it's possible.)
- A horizontal asymptote is a line! So $y=3$ could be a horizontal asymptote, but 3 CANNOT be a horizontal asymptote.

Finding Horizontal Asymptotes

Let $f(x)=\frac{p(x)}{q(x)}$ be a rational function ${ }^{1}$.

$$
f(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}}
$$

Let n be the degree of p, m be the degree of q and a_{n} and b_{m} the leading coefficients for p and q respectively. There are three cases:
(I) If $n<m$, then $y=0$ is the horizontal asymptote to f.
(II) If $n=m$, then $y=\frac{\partial_{n}}{b_{m}}$ is the horizontal asymptote to f.
(III) If $n>m$, then f does not have a horizontal asymptote.
${ }^{1}$ The results are the same whether f is in lowest terms or not.

A word on the relative degrees test

We determine whether a horizontal asymptote exists as well as its equation by comparing the degrees of the numberator and denominator.

While this seems like a gimmick, it can be shown rigorously using tools in Calculus!

Example
Determine the equation of any horizontal asymptote to the rational function f. If one exists, does the graph cross it?
(a) $f(x)=\frac{3 x^{2}+7 x-2}{x^{2}+2 x}=\frac{P(x)}{G(x)}$ $n=2 \quad m=2$ so

There is a horizontal asymptote.
Here $a_{n}=a_{2}=3$

$$
b_{n}=b_{2}=1
$$

So the asymptote is $y=\frac{3}{1} \Rightarrow y=3$

Does f cross the asymptote?
we set $f(x)$ equal to y (when $y=3$).
set $f(x)=3$ try α solve for x.

$$
\begin{aligned}
\frac{3 x^{2}+7 x-2}{x^{2}+2 x}=3 \Rightarrow 3 x^{2}+7 x-2 & =3\left(x^{2}+2 x\right)=3 x^{2}+6 x \\
7 x-2 & =6 x \\
x & =2
\end{aligned}
$$

Check to be sure ont to see if 2 is in the domain. $f(2)=\frac{3(2)^{2}+7(2)-2}{2^{2}+2 \cdot 2}=\frac{12+14-2}{8}=\frac{24}{8}=3$

The graph crosses © $(2,3)$.
(b) $f(x)=\frac{2 x^{4}+9 x^{2}+4}{5 x^{6}+3 x^{3}-2 x^{2}+1}=\frac{P(x)}{f(x)} \quad n=4 \quad m=$

There is a horizontal asymptote $y=0$.
Does the graph cross?
Set $f(x)=y$ where $y=0$

$$
\frac{2 x^{4}+9 x^{2}+4}{5 x^{6}+3 x^{3}-2 x^{2}+1}=0
$$

$$
\Rightarrow \quad 2 x^{4}+9 x^{2}+4=0
$$

this side is
grote then or equal to $4 \Rightarrow$ no solutions.

The graph does not cross the asymptote.

Question

Does the graph of $f(x)=\frac{x^{2}+2 x}{x+1}$ have a horizontal asymptote?
(a) Yes, its equation is $y=1$.

$$
n=2, \quad m=1
$$

(b) Yes, its equation is $y=0$.
$n>m$
(c) Yes, its equation is $y=x+1$.
(d) No, it does not.

Oblique Asymptotes

Figure: Graph of $f(x)=\frac{x^{2}+2 x}{x+1}$ together with the line $y=x+1$.

Oblique Asymptote

From Case III: If $n=m+1$ (i.e. n is exactly one more than m), then f has an oblique asymptote

$$
y=m x+b
$$

To find the asymptote, we perform long division to write

$$
f(x)=\frac{p(x)}{q(x)}=m x+b+\frac{r(x)}{q(x)} .
$$

The degree of the remainder polynomial r will be less than the degree of q.

If $n \geq m+2$, then f has no horizontal and no oblique asymptotes.

Example
Determine the oblique asymptote for the rational function. Does the graph cross it?
(a) $f(x)=\frac{x^{2}+2 x}{x+1} \quad$ Divide $x^{2}+2 x$ by $x+1$

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{x+1 t q u \text { dent }}{x+1} \\
\frac{-\left(x^{2}+x\right)}{x+0} \\
\frac{-(x+1)}{-1 t r^{2}+2 x+0}
\end{array}\right\} \Rightarrow f(x)=x+1+\frac{-1}{x+1}
\end{aligned}
$$

The oblige assurptote is $y=x+1$.
Does it cross? Set $f(x)$ equal to b.

$$
\begin{aligned}
& f(x)=x+1-\frac{1}{x+1} \quad y=x+1 \\
& x+1-\frac{1}{x+1}=x+1 \\
& \frac{-1}{x+1}=0 \\
& \Rightarrow-1=0 \text { always false } \\
& f(x)=y \text { has no solution. }
\end{aligned}
$$

The graph does not cross.

Question

Use long division to find the equation of the oblique asymptote to the graph of $g(x)=\frac{2 x^{3}-x^{2}-x+3}{x^{2}-1}$. (Hint: Write the divisor as $x^{2}+0 x-1$ to align correctly when doing division.)

The equation of the oblique asymptote is
(a) $y=2 x$
(b) $y=2 x-1$
(c) $y=2 x+1$
(d) $y=2 x+2$

Graphing Rational Functions

We can obtain a graph of a rational function in steps and by identifying key features. These include:

- the domain of the function,
- putting it in lowest terms,
- finding any vertical asymptotes
- finding a horizontal or an oblique asymptote if one exists (determine if the graph crosses)
- find the y-intercept if 0 is in the domain (i.e. find $f(0)$)
- find any x-intercepts (i.e. solve $p(x)=0$)
- identify behavior near asymptotes (plot at least one point between each intercept and vert. asymptote)

Plot $f(x)=\frac{x+4}{x^{2}-3} \quad 2$
Determine the domain, and put f into lowest terms.

$$
\begin{aligned}
& f(x)=\frac{x+4}{(x-\sqrt{3})(x+\sqrt{3})} \\
& q(x)=(x-\sqrt{3})(x+\sqrt{3}) \quad \text { so } \quad q(x)=0 \quad \text { if } x= \pm \sqrt{3} .
\end{aligned}
$$

The domain is $\{x \mid x \neq \pm \sqrt{3}\}$.
f is in lowest terms
${ }^{2}$ We'll plot on the graph a few slides down.

$$
f(x)=\frac{x+4}{x^{2}-3}=\frac{x+4}{(x-\sqrt{3})(x+\sqrt{3})}
$$

Find the equations) of any vertical asymptotes.
These are two V. asymptoter

$$
x=\sqrt{3} \quad \text { and } \quad x=-\sqrt{3}
$$

$$
f(x)=\frac{x+4}{x^{2}-3}
$$

Identify any horizontal or oblique asymptote, and identify any points at which the graph crosses.

Here $n=1 \quad n=2$

$$
n<m
$$

Then is a horixiontel asymptote

$$
y=0
$$

Doer it cross? $\frac{x+4}{x^{2}-3}=0 \Rightarrow \begin{aligned} x & +4=0 \\ x & =-4\end{aligned}$

$$
x=-4
$$

If crosses at $x=-4$. The point $(-4,0)$ is on the graph.

$$
f(x)=\frac{x+4}{x^{2}-3}
$$

Identify the points of any x and y intercepts.
y-interest: 0 is in the domain.

$$
\begin{gathered}
f(0)=\frac{0+4}{0^{2}-3}=\frac{-4}{3} \\
\left(0, \frac{-4}{3}\right)
\end{gathered}
$$

The xintencept is $(-4,0)$ (found earlier).

$$
f(x)=\frac{x+4}{x^{2}-3}
$$

Identify points on the graphs-in particular points between intercepts and vertical asymptotes.

Divide the \mathbb{R} line

pick points in between, and find points on the graph

$$
\begin{aligned}
& f(-5)=\frac{-5+4}{(-5)^{2}-3}=\frac{-1}{22} \\
& f(-2)=\frac{-2+4}{(-2)^{2}-3}=\frac{2}{1}=2
\end{aligned}
$$

$$
f(x)=\frac{x+4}{x^{2}-3}
$$

Identify points on the graphs-in particular points between intercepts and vertical asymptotes.

$$
\begin{aligned}
& f(-1)=\frac{-1+4}{(-1)^{2}-3}=\frac{3}{-2} \\
& f(1)=\frac{1+4}{1^{2}-3}=\frac{-5}{2} \\
& f(2)=\frac{2+4}{2^{2}-3}=\frac{6}{1}=6
\end{aligned}
$$

$f(x)=\frac{x+4}{x^{2}-3} \quad$ Intercepts $\quad(-4,0)$ and $\left(0, \frac{-4}{3}\right)$

Interval	$(-\infty,-4)$	$(-4,-\sqrt{3})$	$(-\sqrt{3}, 0)$	$(0, \sqrt{3})$	$(\sqrt{3}, \infty)$	
test pt c	-5	-2	-1	1	2	
$f(c)$	$\frac{-1}{22}$	2	$\frac{-3}{2}$	$\frac{-5}{2}$	6	
sign	-	+	-	-	+	

$$
f(x)=\frac{x+4}{x^{2}-3} \quad \quad x^{5} \quad \sqrt{3} \quad x_{3}
$$

September 21, 2018

