Sept. 21 Math 1190 sec. 51 Fall 2016

Section 2.5: The Derivative of the Trigonometric Functions

We wish to arrive at derivative rules for each of the six trigonometric functions.

The first two are

$$\frac{d}{dx}\sin(x) = \cos(x)$$
 and $\frac{d}{dx}\cos(x) = -\sin(x)$

I proved the first in class, the second is left as an **assigned** homework exercise.

Figure: Graphs of $y = \sin x$, $y = \cos x$, $y = -\sin x$ (from top to bottom).

Examples: Evaluate the derivative.

(a)
$$\frac{d}{dx}(\sin x + 4\cos x) = \frac{d}{dx}S_{inx} + 4\frac{d}{dx}C_{osx}$$

= $C_{osx} + 4(-S_{inx})$
= $C_{osx} - 4S_{inx}$

(b)
$$\frac{d}{d\theta}\theta^4 \sin\theta = \left(\frac{d}{d\theta}\theta^4\right) \sin\theta + \theta^4 \frac{d}{d\theta} \sin\theta$$

= $4\theta^3 \sin\theta + \theta^4 \cos\theta$

)
producter	J
(())	

Question

Find f'(x) where $f(x) = \sin x \cos x$

(a)
$$f'(x) = \cos^2 x - \sin^2 x$$

(b) f'(x) = 1

(c) $f'(x) = -\cos x \sin x$

(d) $f'(x) = 2 \sin x \cos x$

Use the fact that $\tan x = \sin x / \cos x$ to determine the derivative rule for the tangent.

 $\frac{d}{dx}\frac{f}{g} = \frac{f'g-fg'}{g^2}$

$$\frac{d}{dx} \tan x = \frac{d}{dx} \left(\frac{\sin x}{\cos x} \right)$$
$$= \left(\frac{d}{dx} \operatorname{Sinx} \right) \operatorname{Corx} - \operatorname{Sinx} \left(\frac{d}{dx} \operatorname{Corx} \right) \\ \left(\operatorname{Cosx} \right)^{2}$$
$$= \frac{\operatorname{Cosx} \operatorname{Cosx} - \operatorname{Sinx} (-\operatorname{Sinx})}{\operatorname{Cos}^{2} x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \frac{1}{\cos^2 x}$$

 $\frac{d}{dx} ton x = Sec x$

Six Trig Function Derivatives

$$\frac{d}{dx}\sin x = \cos x,$$
 $\frac{d}{dx}\cos x = -\sin x,$

$$\frac{d}{dx}\tan x = \sec^2 x,$$

$$\frac{d}{dx}\cot x = -\csc^2 x,$$

$$\frac{d}{dx}\sec x = \sec x \tan x,$$

$$\frac{d}{dx}\csc x = -\csc x\cot x$$

Find $\frac{dg}{dt}$.

 $g(t) = e^t - 2\cot t$

$$g'(t) = e^{t} - 2(-cs^{2}t)$$

= $e^{t} + 2cs^{2}t$

Find the equation of the line tangent to the graph of $y = \sec x$ at the point $(\pi/3, 2)$.

We need the slope.
$$M_{ton} = Y'(\frac{\pi}{3})$$

 $y'(x) = Sec \times ton \times$
so $M_{ton} = Sec \frac{\pi}{3} ton \frac{\pi}{3} = 2.13$
 $y - y_0 = m(x - x_0)$
 $y - Z = 2.13(x - \frac{\pi}{3})$

$$y = 2\sqrt{3} \times - \frac{2\sqrt{3}\pi}{3} + 2$$

Question

Find
$$f'(x)$$
 where $f(x) = \frac{x^2 + 2}{\tan x}$

(a)
$$f'(x) = \frac{2x}{\sec^2 x}$$

(b) $f'(x) = \frac{2x \tan x - (x^2 + 2) \sec^2 x}{\tan^2 x}$
(c) $f'(x) = \frac{2x \tan x + (x^2 + 2) \sec^2 x}{\tan^2 x}$
(d) $f'(x) = \frac{2x - (x^2 + 2) \sec^2 x}{\tan x}$

Section 3.1: The Chain Rule

Suppose we wish to find the derivative of $f(x) = (x^2 + 2)^2$.

f(x) = x⁴ + 4x² + 4 expand the square

$$f'(x) = 4x^3 + 8x$$

Now suppose we want to differentiate $g(x) = (x^2 + 2)^{10}$. How about $F(x) = \sqrt{x^2 + 2}$? We could expand g, but it would be very tedious, We could expand g, but it would be very tedious, we contitute the derivative of F with any rules so far.

Example of Compositions

Find functions f(u) and g(x) such that

$$F(x) = \sqrt{x^2 + 2} = (f \circ g)(x).$$

To determine how compositions are nessed, we can look at the order of operations used to evaluate the function. (fog)(x) = f(gw)) Tinside function

(2) take the square root.

Note than that if u=g(x)

$$(f \circ g)(x) = f(g(x)) = f(x^2+2) = \int x^2+2$$

as expected.

Example of Compositions

Find functions f(u) and g(x) such that

$$F(x) = \cos\left(\frac{\pi x}{2}\right) = (f \circ g)(x).$$

$$g(x) = \overline{\underline{T}} x$$
 and $f(u) = \cos u$

$$(f \circ g)(x) = f(g(x)) = f(\frac{\pi}{2}x) = Cos(\frac{\pi}{2}x)$$

Theorem: Chain Rule

Suppose *g* is differentiable at *x* and *f* is differentiable at g(x). Then the composite function

$$F = f \circ g$$

is differentiable at x and

$$\frac{d}{dx}F(x) = \frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

In Liebniz notation: if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}.$$

Determine any inside and outside functions and find the derivative.

- (a) $F(x) = \sin^2 x = \left(\frac{S_{nx}}{x} \right)^2$
 - Chain rule F(r) = f(g(x)) so
 - $F'(x) = f'(s(x)) \cdot s'(x)$
 - F'(x) = Qu Cosx
 - = 2 Sinx Cosx

(1) to be sine (2) Squar gaz= SInx $f(u) = u^2$ g'(x) = Cos x f'(u) = zu

(b)
$$F(x) = e^{x^4 - 5x^2 + 1}$$

 $F'(x) = f'(g(x))g'(x)$
 $= e^{x}(yx^3 - 10x)$
 $= e^{x^4 - 5x^2 + 1}(yx^3 - 10x)$
 $= e^{x^4 - 5x^2 + 1}(yx^3 - 10x)$

(c)
$$G(\theta) = \cos\left(\frac{\pi\theta}{2} - \frac{\pi}{4}\right)$$

 $u = g(\theta) = \frac{\pi}{2}\theta - \frac{\pi}{4}$

flus = Corn

 $g'(\theta) = \frac{\pi}{2}$

 $G'(\theta) = f'(s(\theta)) s'(\theta)$

$$= -\frac{\pi}{2} \operatorname{Sin} \left(\frac{\pi}{2} \right)$$
$$= -\frac{\pi}{2} \operatorname{Sin} \left(\frac{\pi}{2} \theta - \frac{\pi}{4} \right)$$

Question

The power rule with the chain rule

If u = g(x) is a differentiable function and *n* is any integer, then

$$rac{d}{dx}u^n=nu^{n-1}rac{du}{dx}.$$

Evaluate:
$$\frac{d}{dx} \left(\frac{x-1}{2x+2}\right)^7$$
 $u = \frac{x-1}{2x+2} = \frac{9}{6} (u)$
 $\frac{du}{dx} = \frac{1}{(2x+2)^2} \frac{(2x+2)^2}{(2x+2)^2} = \frac{2x+2-2x+2}{(2x+2)^2}$
 $= \frac{4}{(2x+2)^2} = \frac{4}{2^2(x+1)^2} = \frac{1}{(x+1)^2}$

$$\frac{d}{dx}\left(\frac{x-1}{2x+2}\right)^{7} = 7u^{6} \cdot \frac{du}{dx}$$

$$= \frac{1}{2} \left(\frac{X-1}{2X+2} \right)^{6} \left(\frac{1}{(X+1)^{2}} \right)$$

 $= \frac{f(x-1)^{2}}{(x+1)^{2}(2x+2)^{6}}$

Find the first and second derivatives of $y = \cot(2t)$ with respect to t.

u=2b, f(u)=Cobuy = f(u) $\frac{du}{dt}$ = 2 $\frac{df}{dt}$ = - Csc²u $\frac{dy}{dt} = \frac{dy}{du}\frac{du}{dt} = -Cscu(z) = -2Csc^{2}(zt)$ $\frac{dy}{dt} = -2\left(C_{S_{1}}(2t)\right)^{2}$ u=g(t)=2t, V= h(w)=Csch $f(y) = -2y^{2}$

$$\frac{du}{dt} = 2$$
, $\frac{dV}{du} = -CscuCotu$, $\frac{dF}{dv} = -4V$

$$\frac{d^2 y}{dt^2} = \frac{df}{dv} \frac{dv}{dt} = \frac{df}{dv} \left(\frac{dv}{du} \frac{dv}{dt} \right)$$

$$\frac{d^2y}{dt^2} = -4v \left(-\operatorname{Green}(o+u)\right) \cdot 2$$

= -4 Cscu (- Csc (2+) (+(2+)).2

- = 8 Csc(2t) Csc(2t) Cot(2t)
- = 8 (x(2(2t) Cot(2t)