Sept 21 Math 2306 sec. 53 Fall 2018

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.

Generalization
Consider the equation in standard form with one known solution. Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-- \text { is known. }
$$

we assume that $y_{2}(x)=u(x) y_{1}(x)$ for some function $u(x)$. Note, since y_{1} is a solution

$$
\frac{d^{2} y_{1}}{d x^{2}}+P(x) \frac{d y_{1}}{d x}+Q(x) y_{1}=0
$$

Weill substitute $y_{2}=u y$, in to the ODE.
weill assume for now that $u(x)>0$.

$$
\begin{aligned}
& y_{2}=u y_{1} \\
& y_{2}^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime} \\
& y_{2}^{\prime \prime}=u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
&=u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
& y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+Q(x) y_{2}=0 \\
& u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+p(x)\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q(x) u y_{1}=0
\end{aligned}
$$

Collect by $u, u^{\prime}, u^{\prime \prime}$

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}+\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right) u=0
$$

Note that the highlighted pout gives

$$
\frac{d^{2} y_{1}}{d x^{2}}+P(x) \frac{d y_{1}}{d x}+Q(x) y_{1}=0
$$

since y, solves the original equation.
we have the equation for h

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) u^{\prime}=0
$$

This is $1^{\text {st }}$ order linear and separable in h^{\prime}.
Let $w=u^{\prime}$ so $w^{\prime}=u^{\prime \prime}$, w solves

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) w=0
$$

Separating variables

$$
\begin{aligned}
& y, w^{\prime}=-\left(2 y_{1}^{\prime}+p(x) y_{1}\right) w \\
& \frac{d w}{d x}=-\frac{\left(2 y_{1}^{\prime}+\rho(x) y_{1}\right)}{y_{1}} w \\
& \frac{1}{w} \frac{d w}{d x}=\frac{-2 y_{1}^{\prime}}{y_{1}}-P(x) \\
& \frac{1}{w} \frac{d w}{d x} d x=-2 \frac{\frac{d y_{1}}{d x}}{y_{1}} d x-P(x) d x \\
& \int \frac{1}{w} d w=-2 \int \frac{d y_{1}}{y_{1}}-\int p(x) d x
\end{aligned}
$$

Suppose $\omega>0$

$$
\begin{aligned}
& \ln w=-2 \ln \left|y_{1}\right|-\int p(x) d x \\
& \ln w=\ln \dot{y}_{1}^{-2}-\int \rho(x) d x
\end{aligned}
$$

exponentiate

$$
\begin{aligned}
\text { ponentiate } & =e^{\ln y_{1}^{-2}-\int \rho(x) d x} \\
& =e^{\ln _{1}^{-2}} \cdot e^{-\int \rho(x) d x} \\
\Rightarrow \quad w & =y_{1}^{-2} e^{-\int p(x) d x}=\frac{e^{-\int \rho(x) d x}}{y_{1}^{2}}
\end{aligned}
$$

As $w=u^{\prime}$, integrate to get

$$
u=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

and the $2^{\text {nd }}$ solution

$$
y_{2}=u y_{1}
$$

The general solution to the ODE is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Example
Solve the initial value problem given one solution to the differential equation.

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0, \quad y_{1}=x^{2}, \quad y(1)=3, \quad y^{\prime}(1)=-3
$$

Standard form

$$
\begin{aligned}
& y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0 \\
& P(x)=\frac{-3}{x} \text { so }-\int P(x) d x=-\int \frac{-3}{x} d x \\
&=\int \frac{3}{x} d x=3 \ln |x|
\end{aligned}
$$

for $x>0$ we con drop the abs. Value bars.

$$
\begin{aligned}
& y_{2}=u y_{1} \text { where } u=\int \frac{e^{-\int p(x) d x}}{\left(y_{1}\right)^{2}} d x \\
& u=\int \frac{e^{3 \ln x}}{\left(x^{2}\right)^{2}} d x=\int \frac{e^{\ln x^{3}}}{x^{4}} d x \\
& =\int \frac{x^{3}}{x^{4}} d x=\int \frac{1}{x} d x=\ln x
\end{aligned}
$$

So $\quad y_{2}=4 y_{1}=(\ln x) x^{2}=x^{2} \ln x$

The general solution to the $O D E$ is

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x
$$

Apply $y(1)=3, \quad y^{\prime}(1)=-3$

$$
\begin{gathered}
y^{\prime}=2 c_{1} x+2 c_{2} x \ln x+\frac{c_{2} x^{2}}{x} \\
y(1)=c_{1}(1)^{2}+c_{2}(1)^{2} \ln 1=3 \\
c_{1}=3 \\
y^{\prime}(1)=2 c_{1} \cdot 1+2 c_{2} \cdot 1 \operatorname{lp} 1+c_{2} \cdot 1=-3 \\
0
\end{gathered}
$$

$$
\begin{aligned}
2 c_{1}+c_{2} & =-3 \\
c_{2} & =-3-2 c_{1}=-3-2 \cdot 3=-9
\end{aligned}
$$

The solution to the IVP is

$$
y=3 x^{2}-9 x^{2} \ln x
$$

