September 21 Math 2306 sec 54 Fall 2015

Section 4.2: Reduction of Order

Recall that a second order, homogeneous, linear equation in standard form looks like

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Any fundamental solution set will necessarily consist of two $\left(y_{1}, y_{2}\right)$ linearly independent solutions.

Herein, we will assume that one such solution $y_{1}(x)$ is known. We seek the second in the form

$$
y_{2}(x)=u(x) y_{1}(x)
$$

for some function $u(x)$.

Generalization
Consider the equation in standard form with one known solution. Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-- \text { is known. }
$$

Look for

$$
\begin{aligned}
& y_{2}(x)=u(x) y_{1}(x) \\
& y_{2}^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime} \\
& y_{2}^{\prime \prime}=u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
&=u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
& y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+P(x)\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q(x) u y_{1}=0 \\
& y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}+\underbrace{\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right.}_{" 0}) u=0
\end{aligned}
$$

Note y_{1} solves the ODE ie. $y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q u x y_{1}=0$

$$
\begin{aligned}
& y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}=0 \\
& y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) w=0
\end{aligned}
$$

Let $w=u^{\prime}$ so $w^{\prime}=u^{\prime \prime}$

$$
\begin{gathered}
w^{\prime}+\left(\frac{2 y_{1}^{\prime}}{y_{1}}+P(x)\right) w=0 \\
\frac{d w}{d x}=-\left(\frac{2 y_{1}^{\prime}}{y_{1}}+P(x)\right) w \\
\frac{1}{w} \frac{d w}{d x} d x=-\left(\frac{2 y_{1}^{\prime}}{y_{1}}+P(x)\right) d x \\
\int \frac{1}{w} d w=-\int 2 \frac{d y_{1}}{y_{1}}-\int P(x) d x \\
\ln w=-2 \ln y_{1}-\int P(x) d x
\end{gathered}
$$

$$
\begin{aligned}
\ln w & =\ln y_{1}^{-2}-\int p(x) d x \\
e^{\ln w} & =e^{\ln y_{1}^{-2}-\int \rho(x) d x}=e^{\ln y_{1}^{-2}} \cdot e^{-\int \rho(x) d x} \\
\Rightarrow \quad w & =y_{1}^{-2} e^{-\int p(x) d x} \\
w & =\frac{e^{-\int \rho(x) d x}}{\left(y_{1}(x)\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
w=h^{\prime} \text { so } u & =\int w d x \\
u & =\int \frac{e^{-\int p(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
\end{aligned}
$$

and

$$
y_{2}(x)=y_{1}(x) u(x)
$$

*

$$
\left.\left.\begin{array}{rl}
\frac{1}{w} \frac{d w}{d x} d x & =-\left(2 \frac{\frac{d y_{1}}{d x}}{y_{1}}+P(x)\right.
\end{array}\right) d x\right] \begin{aligned}
\frac{1}{w} d w & =-\frac{2}{y_{1}} \frac{d y_{1}}{d x} d x-P(x) d x \\
\frac{1}{w} d w & =-\frac{2}{y_{1}} d y_{1}-P(x) d x
\end{aligned}
$$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Example
Find the general solution of the ODE given one known solution

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0, \quad y_{1}=x^{2}
$$

hats assume $x>0$ and put the equation in Stander form

$$
\begin{gathered}
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0 \\
P(x)=-\frac{3}{x},-\int P(x) d x=-\int \frac{-3}{x} d x=3 \ln x=\ln x^{3}
\end{gathered}
$$

$$
\begin{gathered}
\text { so } \frac{e^{-\int \rho(x) d x}}{\left(y_{1}(x)\right)^{2}}=\frac{e^{\ln x^{3}}}{\left(x^{2}\right)^{2}}=\frac{x^{3}}{x^{4}}=\frac{1}{x} \\
u(x)=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}(x)\right)^{2}} d x=\int \frac{1}{x} d x=\ln x \\
y_{2}(x)=u(x) y_{1}(x)=x^{2} \ln x
\end{gathered}
$$

The gena solution to the ODE is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \Rightarrow y=c_{1} x^{2}+c_{2} x^{2} \ln x
$$

Example
Find the solution of the IVP where one solution of the ODE is given.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y_{1}=e^{-2 x}, \quad y(0)=1, \quad y^{\prime}(0)=2
$$

Use reduction of order to find y_{2} :

$$
\begin{aligned}
P(x)=4, & -\int \rho(x) d x=-\int 4 d x=-4 x \\
e^{-\int \rho(x) d x} & =e^{-4 x} \\
u(x)= & \int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}(x)\right)^{2}} d x=\int \frac{e^{-4 x}}{\left(e^{-2 x}\right)^{2}} d x
\end{aligned}
$$

$$
=\int \frac{e^{-4 x}}{e^{-4 x}} d x=\int d x=x
$$

Hence $y_{2}(x)=u(x) y_{1}(x)=x e^{-2 x}$
The genera solution to the DE is

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}
$$

Apply the I.C. $y(0)=1 \quad y^{\prime}(0)=2$

$$
y^{\prime}=-2 c_{1} e^{-2 x}-2 c_{2} x e^{-2 x}+c_{2} e^{-2 x}
$$

$$
\begin{aligned}
& y(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}=1 \Rightarrow c_{1}=1 \\
& y^{\prime}(0)=-2 \cdot 1 e^{0}-2 c_{2} \cdot 0 e^{0}+c_{2} \cdot e^{0}=2 \\
& -2+c_{2}=2 \Rightarrow c_{2}=4
\end{aligned}
$$

The solution to the IVP is

$$
y=e^{-2 x}+4 x e^{-2 x}
$$

Section 4.3: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

Question: What sort of function y could be expected to satisfy

$$
y^{\prime \prime}=\text { constant } \times y^{\prime}+\text { constant } \times y ?
$$

We look for solutions of the form $y=e^{m x}$ with m constant.

This is supposed to solve the DE

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0 \\
y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x} \\
a\left(m^{2} e^{m x}\right)+b\left(m e^{m x}\right)+c e^{m x}=0 \\
e^{m x}\left(a m^{2}+b m+c\right)=0
\end{gathered}
$$

This holds for all x in som interval if

$$
a m^{2}+b m+c=0
$$

This is called the characteristic equation for the D,E.

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0 \\
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \quad \text { where } \quad m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Show that $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ are linearly independent.

$$
\begin{aligned}
& W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
e^{m_{1} x} & e^{m_{2} x} \\
m_{1} e^{m_{1} x} & m_{2} e^{m_{2} x}
\end{array}\right|=e^{m_{1} x}\left(m_{2} m^{m_{2} x}\right)-m_{1} e^{m_{1} x}\left(e^{m_{2} x}\right) \\
&=e^{\left(m_{1}+m_{2}\right) x}\left(m_{2}-m_{1}\right) \neq 0 \quad \text { So, } y_{1} \text { and } y_{2} \\
& \text { Since } m_{2} \neq m_{1}, m_{2}-m_{1} \neq 0 \quad \text { are lin. }
\end{aligned}
$$

