September 21 Math 2306 sec. 56 Fall 2017

Section 7: Reduction of Order

We're considering the equation second order linear homogeneous equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0 .
$$

We are assuming that P and Q are continuous on an interval and that we know one solution $y_{1}(x)$. Note that this means that

$$
\frac{d^{2} y_{1}}{d x^{2}}+P(x) \frac{d y_{1}}{d x}+Q(x) y_{1}=0 .
$$

Any fundamental solution set must contain another linearly independent solution $y_{2}(x)$.

Method of Reduction of Order: We assume that $y_{2}(x)=u(x) y_{1}(x)$ where u is some function that we expect to be able to find.
$\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0$ with $y_{1}(x)$ known
start wi $y_{2}=u y_{1}$
Find $y_{2}^{\prime}, y_{0}^{\prime \prime} \quad y_{2}^{\prime}=u^{\prime} y_{1}+u y_{1}^{\prime}$

$$
\begin{aligned}
y_{2}^{\prime \prime} & =u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
& =u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}
\end{aligned}
$$

Substitute $\quad \frac{d^{2} y_{2}}{d x^{2}}+P(x) \frac{d y_{2}}{d x}+Q(x) y_{2}=0$

$$
u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+P(x)\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q(x) u y_{1}=0
$$

Collect libe derivotives of u

$$
u^{\prime \prime} y_{1}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}+\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right) u=0
$$

Since y, solves the honogineous eqn.

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}=0
$$

Let $w=u^{\prime}$ so $w^{\prime}=u^{\prime \prime}$ the eqn is

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) w=0
$$

$1_{\text {orden }}^{\text {st }}$ gin ond seporable
$\begin{array}{ll}\text { September 20, } 2017 & \text { 保 }\end{array}$
weill sepanote vaicbles

$$
y_{1} \frac{d w}{d x}=-\left(2 y_{1}^{\prime}+P(x) y_{1}\right) w
$$

will assume $w>0$

$$
\begin{aligned}
& \frac{1}{w} \frac{d w}{d x}=\frac{-\left(2 y_{1}^{\prime}+P(x) y_{1}\right)}{y_{1}}=\frac{-2 y_{1}^{\prime}}{y_{1}}-P(x) \\
& \int \frac{1}{w} d w=\int-2 \frac{y_{1}^{\prime}}{y_{1}} d x-\int P(x) d x \\
& \int \frac{1}{w} d w=-2 \int \frac{d y_{1}}{y_{1}}-\int P(x) d x=d y_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \ln w=-2 \ln \left|y_{1}\right|-\int \rho(x) d x \\
& \ln w=\ln y_{1}^{-2}-\int \rho(x) d x
\end{aligned}
$$

Exponenticto

$$
\begin{aligned}
e^{\ln w} & =e^{\ln y_{1}^{-2}-\int \rho(x) d x} \\
w & =e^{\ln y_{1}^{-2}} \cdot e^{-\int \rho(x) d x} \\
w & =y_{1}^{-2} e^{-\int \rho(x) d x}
\end{aligned}
$$

$$
\begin{aligned}
& w=\frac{e^{-\int p(x) d x}}{y_{1}^{2}} \\
& w=\omega^{\prime} \text { so } u=\int w \partial x \\
& \text { so } u(x)=\int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x \\
& \text { and } \quad y_{2}(x)=u(x) y_{1}(x)
\end{aligned}
$$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Example
Find the general solution of the ODE given one known solution

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0, \quad y_{1}=x^{2}
$$

well use reduction of arden: Standard form

$$
\begin{gathered}
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0 \\
P(x)=\frac{-3}{x} \quad \text { our integrand is } \quad \frac{e^{-\int P(x) d x}}{(y,)^{2}}
\end{gathered}
$$

The integrand is $\frac{e^{-\int \frac{-3}{x} d x}}{\left(x^{2}\right)^{2}}$

$$
\begin{aligned}
& \frac{e^{\int \frac{3}{x} d x}}{x^{4}}=\frac{e^{3 \ln x}}{x^{4}}=\frac{e^{\ln x^{3}}}{x^{4}}=\frac{x^{3}}{x^{4}}=\frac{1}{x} \\
& u=\int \frac{e^{-\int \rho(x) d x}}{(y)^{2}} d x=\int \frac{1}{x} d x=\ln x \\
& y_{2}=u y_{1}=(\ln x) x^{2}=x^{2} \ln x
\end{aligned}
$$

The genenal solution to the homogereows ean is $\quad y=c_{1} x^{2}+c_{2} x^{2} \ln x$

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

Question: What sort of function y could be expected to satisfy

$$
y^{\prime \prime}=\text { constant } y^{\prime}+\text { constant } y ?
$$

We look for solutions of the form $y=e^{m x}$ with m constant.
we want to solve $a y^{\prime \prime}+b y^{\prime}+c y=0$

$$
y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x}
$$

Substitute $a m^{2} e^{m x}+b m e^{m x}+c e^{m x}=0$
factor $\quad e^{m x}\left(a m^{2}+b m+c\right)=0$
This holds for all x in some interve if

$$
a m^{2}+b m+c=0 \quad \text { quadratic }
$$ equation ।

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } b^{2}-4 a c>0 \\
y=c_{1} e^{m_{1} x}+c_{2} \underbrace{m_{2} x}_{y_{1}} \\
y_{y_{2}}
\end{gathered}
$$

Show that $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ are linearly independent.
well use the Wronskion 2 fact $\Rightarrow 2 \times 2$

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{cc}
e^{m_{1} x} & e^{m_{2} x} \\
m_{1} e^{m_{1} x} & m_{2} e^{m_{2} x}
\end{array}\right| \\
& =e^{m_{1} x}\left(m_{2} e^{m_{2} x}\right)-m_{1} e^{m_{1} x}\left(e^{m_{2} x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =e^{m_{1} x} e^{m_{2} x}\left(m_{2}-m_{1}\right) \\
W\left(y_{1}, y_{2}\right)(x) & =e^{\left(m_{1}+m_{2}\right) x}\left(m_{2}-m_{1}\right)
\end{aligned}
$$

The cloim is that $W \neq 0$.
well, $e^{\left(m_{1}+m_{2}\right) x}$ is never $3 e r o$.
Since $m_{1} \neq m_{2}, m_{2}-m_{1} \neq 0$
So $w \neq 0$, they ore lin. independent.

Example
Solve the IVP

$$
y^{\prime \prime}+y^{\prime}-12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=10
$$

$2^{\text {nd }}$ orden lineos wl constat coefficiects.
Choractaistic Eqn:

$$
\begin{gathered}
m^{2}+m-12=0 \\
(m+4)(m-3)=0 \\
m_{1}=-4 \quad m_{2}=3
\end{gathered}
$$

$$
y_{1}=e^{-4 x}, y_{2}=e^{3 x}
$$

Generd solution is $y=c_{1} e^{-4 x}+c_{2} e^{3 x}$

Apfiy $y(0)=1 \quad y^{\prime}(0)=10$

$$
\begin{array}{ll}
y=c_{1} e^{-4 x}+c_{2} e^{3 x} & y(0)=c_{1}+c_{2}=1 \\
y^{\prime}=-4 c_{1} e^{-4 x}+3 c_{2} e^{3 x} & y^{\prime}(0)=-4 c_{1}+3 c_{2}=10
\end{array}
$$

add

$$
\left.\begin{array}{rl}
4 c_{1}+4 c_{2} & =4 \\
-4 c_{1}+3 c_{2} & =10
\end{array}\right\} \Rightarrow 7 c_{2}=14 \quad c_{2}=2
$$

The soln to the IVP is

$$
y=-e^{-4 x}+2 e^{3 x}
$$

