September 21 Math 3260 sec. 58 Fall 2017

Section 2.2: Inverse of a Matrix
If A is an $n \times n$ matrix, we seek a matrix A^{-1} that satisfies the condition

$$
A^{-1} A=A A^{-1}=I_{n}
$$

If such matrix A^{-1} exists, we'll say that A is nonsingular (a.k.a. invertible). Otherwise, we'll say that A is singular.

Theorem (2×2 case)

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then A is singular.

The quantity $a d-b c$ is called the determinant of A.

Theorem: If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

Example

Solve the system using a matrix inverse

$$
\begin{aligned}
4 x_{1}+x_{2} & =7 \\
-2 x_{1}+3 x_{2} & =7
\end{aligned} \quad A \vec{x}=\vec{b} \quad A=\left[\begin{array}{cc}
4 & 1 \\
-2 & 3
\end{array}\right] \quad \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \vec{b}=\left[\begin{array}{l}
7 \\
7
\end{array}\right]
$$

A^{-1} exists oud

$$
A^{-1}=\frac{1}{14}\left[\begin{array}{ll}
3 & -1 \\
2 & 4
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{14} & \frac{-1}{14} \\
\frac{2}{14} & \frac{4}{14}
\end{array}\right]
$$

The solution

$$
\begin{aligned}
\vec{x} & =A^{-1} \vec{b}=\frac{1}{14}\left[\begin{array}{ll}
3 & -1 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
7 \\
7
\end{array}\right] \\
& =\frac{1}{14}\left[\begin{array}{l}
14 \\
42
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
\end{aligned}
$$

Theorem

(i) If A is invertible, then A^{-1} is also invertible and

$$
\left(A^{-1}\right)^{-1}=A .
$$

(ii) If A and B are invertible $n \times n$ matrices, then the product $A B$ is also invertible ${ }^{1}$ with

$$
(A B)^{-1}=B^{-1} A^{-1} .
$$

(iii) If A is invertible, then so is A^{T}. Moreover

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

${ }^{1}$ This can generalize to the product of k invertible matrices.

Elementary Matrices

Definition: An elementary matrix is a square matrix obtained from the identity by performing one elementary row operation.

Examples:

$$
\begin{array}{rc}
E_{1}= & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .} \\
& 3 R_{2} \rightarrow R_{2}
\end{array} \quad 2 R_{1}+R_{3} \rightarrow R_{3} \quad R_{1} \leftrightarrow R_{2} .
$$

Action of Elementary Matrices

Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, and compute the following products

$$
\begin{gathered}
E_{1} A, E_{2} A, \text { and } E_{3} A . \\
E_{1} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
3 d & 3 e & 3 f \\
g & h & i
\end{array}\right] \\
3 R_{2} \rightarrow R_{2} \\
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& E_{2} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
&=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
2 a+g & 2 b+h & 2 c+i
\end{array}\right] \\
& E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& E_{3} A= {\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
c & b & c \\
d & e & f \\
g & h & i
\end{array}\right] } \\
&=\left[\begin{array}{lll}
d & e & f \\
a & b & c \\
g & h & i
\end{array}\right] \\
& R_{1} \leftrightarrow R_{2} \\
& E_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Remarks

- Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),
- Each elementary matrix is invertible where the inverse undoes the row operation,
- Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A
$$

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_{n}. Moreover, if

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A=I_{n}, \quad \text { then } \quad A=\left(E_{k} \cdots E_{2} E_{1}\right)^{-1} I_{n} .
$$

That is,

$$
A^{-1}=\left[\left(E_{k} \cdots E_{2} E_{1}\right)^{-1}\right]^{-1}=E_{k} \cdots E_{2} E_{1} .
$$

The sequence of operations that reduces A to I_{n}, transforms I_{n} into A^{-1}.

This last observation-operations that take A to I_{n} also take I_{n} to A^{-1}-gives us a method for computing an inverse!

Algorithm for finding A^{-1}

To find the inverse of a given matrix A :

- Form the $n \times 2 n$ augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$.
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- If $\operatorname{rref}(A)$ is I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$, and the inverse A^{-1} will be the last n columns of the reduced matrix.
- If $\operatorname{rref}(A)$ is NOT I, then A is not invertible.

Remarks: We don't need to know ahead of time if A is invertible to use this algorithm.
If A is singular, we can stop as soon as it's clear that $\operatorname{rref}(A) \neq I$.

Examples: Find the Inverse if Possible
(a)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & -1 \\
-4 & -7 & 3 \\
-2 & -6 & 4
\end{array}\right] \quad \text { Set up }\left[\begin{array}{ll}
A & I
\end{array}\right]} \\
& {\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
-4 & -7 & 3 & 0 & 1 & 0 \\
-2 & -6 & 4 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\quad \begin{array}{llllllll}
4 R_{1}+R_{2} \rightarrow R_{2} \\
2 R_{1}+R_{3} \rightarrow R_{7}
\end{array} \\
4
\end{array}} \\
& \begin{array}{ccccccccccccc}
-4 & -4 & 4 & 0 & 0 & 2 & 4 & -2 & 2 & 0 & 0 \\
-4 & -7 & 3 & 0 & 1 & 0 & -2 & -6 & 4 & 0 & 0 & 1
\end{array}
\end{aligned}
$$

$$
\left.\left.\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & -2 & 2 & 2 & 0 & 1
\end{array}\right] \quad \begin{array}{lllll}
2 R_{2}+R_{3} \rightarrow R_{3}
\end{array}\right] \begin{array}{llllllll}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & 0 & 0 & 10 & 2 & 1
\end{array}\right] \quad \begin{array}{llllll}
0 & 2 & -2 & 8 & 2 & 0 \\
0 & -2 & 2 & 2 & 0 & 1
\end{array}
$$

A has orly 2 picot columns so

$$
\operatorname{rret}(A) \neq I
$$

$$
A \text { is singuler. }
$$

Examples: Find the Inverse if Possible
(b)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
5 & 6 & 0
\end{array}\right]^{=A} \text { Form }\left[\begin{array}{ll}
A & I
\end{array}\right]} \\
& {\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
5 & 6 & 0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{lcccc}
-5 R_{1}+R_{3} \rightarrow R_{3} \\
-5 & -10 & -15 & -5 & 0 \\
5 & 0 & 0 & 0 & 0
\end{array}} \\
& {\left[\begin{array}{ccccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & -4 & -15 & -5 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right]} \\
& 0416040 \\
& \begin{array}{llllll}
0 & -4 & -15 & -5 & 0 & 1
\end{array} \\
& -4 R_{3}+R_{2} \rightarrow R_{2} \\
& -3 R_{3}+R_{1} \rightarrow R_{1} \\
& {\left[\begin{array}{cccccc}
1 & 2 & 0 & 16 & -12 & -3 \\
0 & 1 & 0 & 20 & -15 & -4 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right]\left[\begin{array}{cccccc}
0 & 0 & -4 & 20 & -16 & -4 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & 0 & -3 & 15 & -12 & -3 \\
1 & 2 & 3 & 1 & 0 & 0
\end{array}\right.} \\
& \text { Findlly } \quad-2 R_{2}+R_{1} \rightarrow R_{1}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
1 & 0 & 0 & -24 & 18 & 5 \\
0 & 1 & 0 & 20 & -15 & -4 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right]\left[\begin{array}{ccccc}
0 & -2 & 0 & -40 & 30 \\
1 & 8 & 0 & 16 & -12
\end{array}\right]-3} \\
A^{-1}=\left[\begin{array}{ccc}
-24 & 18 & 5 \\
20 & -15 & -4 \\
-5 & 4 & 1
\end{array}\right]
\end{gathered}
$$

Solve the linear system if possible

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & =3 \\
x_{2}+4 x_{3} & =3 \\
5 x_{1}+6 x_{2} & =4
\end{aligned}
$$

The coefficient matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{array}\right]$
has inverse $A^{-1}=\left[\begin{array}{ccc}-24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1\end{array}\right]$

$$
\vec{x}=A^{-1} \vec{b}=\left[\begin{array}{ccc}
-24 & 18 & 5 \\
20 & -13 & -4 \\
\cdot 5 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
3 \\
4
\end{array}\right] \quad \begin{aligned}
& 24 \cdot 3+18 \cdot 3+5 \cdot 4 \\
& 20 \cdot 3+(-15) \cdot 3+(-4) \cdot 4 \\
& -5 \cdot 3+4 \cdot 3+1 \cdot 4
\end{aligned}
$$

$$
=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

Section 2.3: Characterization of Invertible Matrices

Given an $n \times n$ matrix A, we can think of

- A matrix equation $A \mathbf{x}=\mathbf{b}$;
- A linear system that has A as its coefficient matrix;
- A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by $T(\mathbf{x})=A \mathbf{x}$;
- Not to mention things like its pivots, its rref, the linear dependence/independence of its columns, blah blah blah...

Question: How is this stuff related, and how does being singular or invertible tie in?

Theorem: Suppose A is $n \times n$. The following are equivalent. ${ }^{2}$

(a) A is invertible.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A are linearly independent.
(f) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one to one.
(g) $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto.
(j) There exists an $n \times n$ matrix C such that $C A=I$.
(k) There exists an $n \times n$ matrix D such that $A D=I$.
(I) A^{T} is invertible.
${ }^{2}$ Meaning all are true or none are true.

Theorem: (An inverse matrix is unique.)
Let A and B be $n \times n$ matrices. If $A B=I$, then A and B are both invertible with $A^{-1}=B$ and $B^{-1}=A$.

Consider the homogeneous equation $B \vec{x}=\overrightarrow{0}$.

$$
\vec{x}=I \vec{x}=A B \vec{x}=A(B \vec{x})=A \vec{o}_{0}=\overrightarrow{0} .
$$

So the hon-geveour equation has only the trivial solution so B^{-1} exists.

Now
$A B=I$ multiply, on the
right by B^{-1}

$$
\begin{aligned}
A B B^{-1} & =I B^{-1} \\
A\left(B B^{-1}\right) & =B^{-1} \\
A I & =B^{-1} \Rightarrow A=B^{-1}
\end{aligned}
$$

Since B^{-1} is inventivh

$$
(A)^{-1}=\left(B^{-1}\right)^{-1} \Rightarrow A^{-1}=B
$$

Invertible Linear Transformations

Definition: A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is said to be invertible if there exists a function $S: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ such that both

$$
S(T(\mathbf{x}))=\mathbf{x} \quad \text { and } \quad T(S(\mathbf{x}))=\mathbf{x}
$$

for every \mathbf{x} in \mathbb{R}^{n}.

If such a function exists, we typically denote it by

$$
S=T^{-1} .
$$

Theorem (Invertibility of a linear transformation and its matrix)

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear transformation and A its standard matrix. Then T is invertible if and only if A is invertible. Moreover, if T is invertible, then

$$
T^{-1}(\mathbf{x})=A^{-1} \mathbf{x}
$$

for every \mathbf{x} in \mathbb{R}^{n}.

Example
Use the standard matrix to determine if the linear transformation is invertible. If it is invertible, characterize the inverse transformation.

$$
T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \quad \text { given by } \quad T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-x_{2}, 4 x_{2}\right)
$$

Find the standard matrix A.

$$
\begin{gathered}
T\left(\vec{e}_{1}\right)=T(1,0)=(3,0), T\left(\vec{e}_{2}\right)=T(0,1)=(-1,4) \\
A=\left[\begin{array}{cc}
3 & -1 \\
0 & 4
\end{array}\right] \operatorname{det}(A)=3 \cdot 4-0 \cdot(-1)=12 \neq 0 \\
A \text { is invertible }
\end{gathered}
$$

$$
A^{-1}=\frac{1}{12}\left[\begin{array}{ll}
4 & 1 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{12} \\
0 & \frac{1}{4}
\end{array}\right]
$$

T^{-1} exists and $T^{-1}(\vec{x})=\ddot{A} \vec{x}$

$$
\begin{aligned}
& A^{-1} \vec{x}=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{12} \\
0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} x_{1}+\frac{1}{12} x_{2} \\
\frac{1}{4} x_{2}
\end{array}\right] \\
& T^{-1}\left(x_{1}, x_{2}\right)=\left(\frac{1}{3} x_{1}+\frac{1}{12} x_{2}, \frac{1}{4} x_{2}\right)
\end{aligned}
$$

Example

Suppose $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a one to one linear transformation. Can we determine whether T is onto? Why (or why not)?

Yes, we cm say T is onto. Its standerd matrix is $n \times n$. If $x \mapsto A \vec{x}$ is one to one. it must be onto.

