## Sept. 23 Math 1190 sec. 52 Fall 2016

## Section 3.1: The Chain Rule

Theorem: (Chain Rule) Suppose $g$ is differentiable at $x$ and $f$ is differentiable at $g(x)$. Then the composite function

$$
F=f \circ g
$$

is differentiable at $x$ and

$$
\frac{d}{d x} F(x)=\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

In Liebniz notation: if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Example

Evaluate $\frac{d}{d s} \csc \left(e^{s}\right)$

$$
\begin{aligned}
\frac{d}{d s} \csc & \left(e^{s}\right) \\
& =-\csc \left(e^{s}\right) \cot \left(e^{s}\right) \cdot e^{s} \\
& =-e^{s} \csc \left(e^{s}\right) \cot \left(e^{s}\right)
\end{aligned}
$$

Inside $u=g(s)=e^{s}$
outsibe $f(u)=\csc u$

Example
Find the equation of the line tangent to the graph of $y=\cos ^{2} x$ at the point $\left(\frac{\pi}{4}, \frac{1}{2}\right)$.
we need a point and a slope.
point: $(\pi / 4,1 / 2)$ given
slope: $m_{\text {ton }}=y^{\prime}(c)$ here $c=\pi / 4$

$$
\begin{array}{ll}
y=(\cos x)^{2} & \begin{array}{l}
\text { inside function } \\
\text { outside }
\end{array} \\
\frac{d y}{d x}=2 u \cdot(-\sin x) & f(u)=u^{2} \\
g^{\prime}(x) & =-\sin x, f^{\prime}(u)=2 u \\
\frac{d}{d x} f(g(x)) & =f^{\prime}(g(x)) g^{\prime}(x)
\end{array}
$$

$$
\begin{gathered}
\frac{d y}{d x}=2 \cos x(-\sin x)=-2 \cos x \sin x \\
m_{\text {tan }}=y^{\prime}(\pi / 4)=-2 \cos \pi / 4 \sin \pi / 4=-2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)=\frac{-2}{2}=-1 \\
\text { point }\left(\begin{array}{l}
\pi / 4,1 / 2) \text { slope } m_{\text {ton }}=-1 \\
x_{0} \quad y_{0} \\
y-y_{0}=m\left(x-x_{0}\right) \\
y-\frac{1}{2}=-1(x-\pi / 4) \\
y=-x+\frac{\pi}{4}+\frac{1}{2}
\end{array}\right.
\end{gathered}
$$

* We get the slope of the tangent line from the derivative
* Slope is a number (constant).


Figure: $y=\cos ^{2} x$ and the tangent line at $\left(\frac{\pi}{4}, \frac{1}{2}\right)$.

We may be able to choose between differentiation methods.

Evaluate $\frac{d}{d x} \frac{\sin x}{x^{3}+2}$ using
(a) The quotient rule:

$$
\begin{aligned}
\frac{d}{d x} \frac{\sin x}{x^{3}+2} & =\frac{\cos x\left(x^{3}+2\right)-\sin x\left(3 x^{2}\right)}{\left(x^{3}+2\right)^{2}} \\
& =\frac{\left(x^{3}+2\right) \cos x-3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}}
\end{aligned}
$$

(b) writing $\frac{\sin x}{x^{3}+2}=(\sin x)\left(x^{3}+2\right)^{-1}$ and using the chain rule.
product rule

$$
\begin{array}{rlrl}
\frac{d}{d x}\left(x^{3}+2\right)^{-1} & =-u^{-2} \cdot\left(3 x^{2}\right) & \frac{d}{d x} f g=f^{\prime} g+f g^{\prime} \\
& =-\left(x^{3}+2\right)^{-2}\left(3 x^{2}\right) & \text { If } & u=g(x)=x^{3}+2 \\
& =-3 x^{2}\left(x^{3}+2\right)^{-2} & f(u)=u^{-1} \text {, then } \\
& g^{\prime}(x)=3 x^{2} \\
& f^{\prime}(u)=-1 u^{-2}=-u^{-2} \\
\frac{d}{d x} \sin x\left(x^{3}+2\right)^{-1}=\cos x\left(x^{3}+2\right)^{-1}+\sin x\left(-3 x^{2}\left(x^{3}+2\right)^{-2}\right)
\end{array}
$$

$$
\begin{aligned}
& =\cos x\left(\frac{1}{x^{3}+2}\right)-3 x^{2} \sin x \frac{1}{\left(x^{3}+2\right)^{2}} \\
& =\frac{\cos x}{x^{3}+2}-\frac{3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}} \\
& =\frac{\cos x}{x^{3}+2} \cdot\left(\frac{x^{3}+2}{x^{3}+2}\right)-\frac{3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}} \\
& =\frac{\cos x\left(x^{3}+2\right)}{\left(x^{3}+2\right)^{2}}-\frac{3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}} \\
& =\frac{\left(x^{3}+2\right) \cos x-3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}} \text { as betore }
\end{aligned}
$$

## Questions

Evaluate $f^{\prime}(x)$ where $f(x)=\sin \left(3 x^{2}+2 x\right)$

$$
\mu_{\text {outsice }} \text { insite }
$$

$$
\begin{aligned}
& u=g(x)=3 x^{2}+2 x \\
& f(u)=\sin u \\
& g^{\prime}(x)=6 x+2 \\
& f^{\prime}(u)=\cos n
\end{aligned}
$$

(a) $f^{\prime}(x)=\cos \left(3 x^{2}+2 x\right)$
(b) $f^{\prime}(x)=(6 x+2) \sin (x)+\left(3 x^{2}+2 x\right) \cos (x)$
(c) $f^{\prime}(x)=-(6 x+2) \cos \left(3 x^{2}+2 x\right)$
(d)) $f^{\prime}(x)=(6 x+2) \cos \left(3 x^{2}+2 x\right)$

Questions

Find the equation of the line tangent to the graph of $f(x)=e^{\sin x}$ at the point $(0, f(0))$. $y$-value for point $f(0)=e^{\sin 0}=e^{0}=1$
(a) $y=x+1$
(b) $y=1$
point $(0,1)$
(c) $y=x-1$
(d) $y=e x+1$

$$
\begin{array}{rlrl}
m_{\tan } & =f^{\prime}(0) & \text { Inside } & g(x)=\sin x \\
f^{\prime}(x) & =e^{4} \cdot \cos x & f(u)=e^{n} \\
& =e^{\sin x} \cos x & g^{\prime}(x)=\cos x \\
f^{\prime}(u)=e^{4}
\end{array}
$$

$$
m_{\text {tan }}=f^{\prime}(0)=e^{\sin 0} \cos 0=1 \cdot 1=1
$$

