Sept. 23 Math 1190 sec. 52 Fall 2016

Section 3.1: The Chain Rule

Theorem: (Chain Rule) Suppose g is differentiable at x and f is differentiable at g(x). Then the composite function

$$F = f \circ g$$

is differentiable at x and

$$\frac{d}{dx}F(x) = \frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

In Liebniz notation: if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

Example

Evaluate $\frac{d}{ds} \csc(e^s)$ $\frac{d}{ds}$ Csc $\begin{pmatrix} e^{s} \end{pmatrix}$ = $-C_{sl}(e^{s})c_{o}t(e^{s}) \cdot e^{s}$ $= - e^{s} C_{sl}(e^{s}) \omega t(e^{s})$

Ineide u=g(s)= e Outsile fin = Cscu g'(s) = e f'(u)= - Csen Lotu $\frac{d}{ds}f(g(s))=f'(g(s))g'(s)$

Example

Find the equation of the line tangent to the graph of $y = \cos^2 x$ at the point $(\frac{\pi}{4}, \frac{1}{2})$.

we need a point and a slope. point: (Thy, the) given Slope: Men = y'(c) here c= T/y inside function u= g(x) = Cosx y= (65 x) $f(w) = w^2$ outside g'(x) = - sinx, f'(n) = 24 $\frac{d\vartheta}{dx} = \partial \mu \cdot (-Sinx)$ $\frac{d}{dx}f(q(x))=f'(q(x))g'(x)$

$$\frac{dy}{dx} = 2 \operatorname{Cosx} (-\operatorname{Sinx}) = -2 \operatorname{Cosx} \operatorname{Sinx}$$

$$\operatorname{Mtcn} = y'(\pi_{4}) = -2 \operatorname{Gs} \pi_{4} \operatorname{Sin} \pi_{4} = -2 (\frac{1}{42}) (\frac{1}{42}) = \frac{-2}{2} = -[$$

$$\operatorname{point} (\pi_{4}, \frac{1}{2}) \operatorname{Slope} \operatorname{Mtcn} = -1$$

$$\operatorname{yo} \operatorname{yo} = \operatorname{Mtcn} = -1$$

$$\operatorname{Mtcn} = -1$$

$$\operatorname{Mtcn} = -1$$

$$\operatorname{yo} \operatorname{yo} = \operatorname{Mtcn} = -1$$

$$\operatorname{Mtcn} = -1$$

Figure: $y = \cos^2 x$ and the tangent line at $(\frac{\pi}{4}, \frac{1}{2})$.

We may be able to choose between differentiation methods.

Evaluate
$$\frac{d}{dx} \frac{\sin x}{x^3 + 2}$$
 using

(a) The quotient rule:

$$\frac{d}{dx} \frac{S_{1}nx}{x^{3}+2} = \frac{C_{0}(x^{3}+2) - S_{1}nx(3x^{2})}{(x^{3}+2)^{2}}$$

$$= \frac{(x^{3}+2)\cos x - 3x^{2}\sin x}{(x^{3}+2)^{2}}$$

$$\frac{d}{dx}\frac{f}{g} = \frac{f'g-fg'}{gr}$$

(b) writing $\frac{\sin x}{x^3+2} = (\sin x)(x^3+2)^{-1}$ and using the chain rule. product rule difg = f'g + fg' $\frac{d}{L}(x^{3}+2) = -u^{2} \cdot (3x^{2})$ If u= g(x)= x3+2 $= -(\chi^{3}+2)(3\chi^{2})$ flut = ui then $= -3x^{2}(x^{3}+7)$ g'(x)= 3x2 $f'_{(u)} = -lu^2 = -u^2$ $\frac{1}{4x} \operatorname{Sinx} \left(x^{3} + 2 \right)^{-1} = \operatorname{Cosx} \left(x^{3} + 2 \right)^{-1} + \operatorname{Sinx} \left(-3x^{2} \left(x^{3} + 2 \right)^{-2} \right)$

$$= C_{05\chi}\left(\frac{1}{\chi^{3}+2}\right) - 3\chi^{2} \sin\chi \frac{1}{(\chi^{3}+2)^{2}}$$

$$= \frac{C_{01}\chi}{\chi^{3}+2} \cdot \left(\frac{\chi^{3}+2}{\chi^{3}+2}\right) = -\frac{3\chi^{2}S_{1}\chi}{\left(\chi^{3}+\chi\right)^{2}}$$

$$= \frac{C_{05X}(x^{3}+2)}{(x^{3}+2)^{2}} - \frac{3x^{2}S_{1}x}{(x^{3}+2)^{2}}$$

$$= \frac{(x^{3}+2)(orx - 3x^{2})}{(x^{3}+2)^{2}} as before$$

Questions

Evaluate
$$f'(x)$$
 where $f(x) = \sin(3x^2+2x)$
 $f(x) = \cos(3x^2+2x)$
(a) $f'(x) = \cos(3x^2+2x)$
(b) $f'(x) = (6x+2)\sin(x) + (3x^2+2x)\cos(x)$
(c) $f'(x) = -(6x+2)\cos(3x^2+2x)$

(d)
$$f'(x) = (6x+2)\cos(3x^2+2x)$$

(a)

(b)

Questions

Find the equation of the line tangent to the graph of $f(x) = e^{\sin x}$ at the point (0, *f*(0)). y-volve for point $f(a) = \rho^{SinO} = \rho^{SinO}$ point (0,1) (a) y = x + 1Inside g(x)= Sinx f(u)= B Mton = f'(0) (b) y = 1f (x)= p · cosx 8'(x) = (ur x (c) v = x - 1= e Cost film = e (d) y = ex + 1M+m=f'(0)=e 6010=[.[=]